Skip to main content
Log in

Atomic clocks: A brief history and current status of research in India

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Frequency corresponding to the energy difference between designated levels of an atom provides precise reference for making a universally accurate clock. Since the middle of the 20th century till now, there have been tremendous efforts in the field of atomic clocks making time the most accurately measured physical quantity. National Physical Laboratory India (NPLI) is the nation’s timekeeper and is developing an atomic fountain clock which will be a primary frequency standard. The fountain is currently operational and is at the stage of complete frequency evaluation. In this paper, a brief review on atomic time along with some of the recent results from the fountain clock will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. The International System of Units (SI), BIPM, International Committee for Weights and Measures Ed. 8 (2006)

  2. M A Lombardi, in: The mechatroincs handbook edited by R H Bishop (CRC Press, Boca Raton, 2002), Chap. 17

  3. J Jespersen and J F Randolph, in: From sundials to atomic clocks – Understanding time and frequency (NIST, Washington DC, 1999)

  4. F Riehle, in: Frequency standards – Basics and applications (Wiley-VCH, Weinheim, 2004), Chap. 1

  5. F G Major, in: The quantum beat: The physical principles of atomic clocks (Springer-Verlag, New York, 1998)

  6. G Kamas and M A Lombardi, in: Time and frequency users manual – NIST Special publication 559 (NIST, Boulder, CO, 1990)

  7. J Vanier and C Audoin, in: The quantum physics of atomic frequency standards (Adam Hilger, Bristol and Philadelphia, 1989)

  8. J Levine, Rev. Sci. Instrum. 70(6), 2567 (1999)

    Google Scholar 

  9. E Peik, The measurement of time with atomic clocks, in: Time and matter (World Scientific Publishing Company Pvt Ltd, 2006), ISBN: 981-256-634-1

  10. M A Lombardi, T P Heavner and S R Jefferts, The J. Meas. Sci. 2(4), 74 (2007)

  11. R Wynands, in: Time in quantum mechanics edited by J G Muga, A Ruschhaupt and A del Campo (Springer, Berlin Heidelberg, 2009) Vol. 2, Chap. 13, p. 291

  12. J C Maxwell, in: Treatise on electricity and magnetism (Clarendon Press, Oxford, 1873)

  13. N F Ramsey, in: Biographical memoirs (National Academy Press, Washington DC, 1993) Vol. 62, Chap. I.I. Rabi, p. 315

  14. N F Ramsey and H B Silsbee, Phys. Rev. 84, 506 (1951)

  15. C Hackman and D B Sullivan, Am. J. Phys. 63(4), 306 (1995)

  16. L Essen and J V L Parry, Nature 176, 280 (1955)

  17. R E Beehler, Proc. IEEE 55(6) 792 (1967)

  18. A O McCoubrey, IEEE International Frequency Control Symposium, 1225 (1996)

  19. N F Ramsey, Metrologia 1(1), 7 (1965)

  20. F H Reder, USASRDL Tech. Rep., 2230 (AD 265452) (1961)

  21. A Bagley and L Cutler, Proc. of the 18th Annual Frequency Control Symposium, 344 (1964)

  22. J Shirley, W Lee and R Drullinger, Metrologia 38, 427 (2001)

  23. S Chu, Rev. Mod. Phys. 7(3), 685 (1998)

    Google Scholar 

  24. C N Cohen-Tannoudji, Rev. Mod. Phys. 70(3), 707 (1998)

    Google Scholar 

  25. W D Phillips, Rev. Mod. Phys. 70(3), 721 (1998)

    Google Scholar 

  26. P Forman, Proc. IEEE 73, 1181 (1985)

    Google Scholar 

  27. H J Metcalf and P van der Straten, in: Laser-cooling and trapping (Springer-Verlag, New York, 1999)

  28. N F Ramsey, J. Res. NBS 88, 301 (1983)

    Google Scholar 

  29. BIPM Annual Report on Time Activities, Vol. 6, BIPM (2011)

  30. F Levi, D Calonico, L Lorini and A Godone, Metrologia 43(6), 545 (2006)

    Google Scholar 

  31. M Kumagai, H Ito, M Kajita and M Hosokawa, Metrologia 45(2), 139 (2008)

  32. T P Heavner, S R Jefferts, E A Donley, J H Shirley and T E Parker, Metrologia 42(5), 411 (2005)

    Google Scholar 

  33. A Takamizawa, S Yanagimachi, Y Shirakawa, K Watabe, K Hagimoto and T Ikegami, Proc. of the 42nd Annual Precise Time and Time Interval Systems and Applications Meeting (Reston, Virginia, 2010), p. 321

  34. K Szymaniec, S E Park, G Marra and W Chalupczak, Metrologia 47(4), 363 (2010)

    Google Scholar 

  35. S Weyers, U Hübner, R Schröder, Chr Tamm, and A Bauch, Metrologia 38(4), 343 (2001)

    Google Scholar 

  36. V Gerginov, N Nemitz, S Weyers, R Schroder, D Griebsch and R Wynands, Metrologia 47(1), 65 (2010)

    Google Scholar 

  37. J Guena, M Abgrall, D Rovera, P Laurent, B Chupin, M Lours, G Santarelli, P Rosenbusch, M Tober, R Li, K Gibble, A Clairon and S Bize, IEEE Trans. on UFFC 59(3), 391 (2012)

    Google Scholar 

  38. J Guena, P Rosenbusch, P Laurent, M Abgrall, D Rovera, G Santarelli, M Tober, S Bize and A Clairon, IEEE Trans. on UFFC 57(3), 647 (2010)

    Google Scholar 

  39. P Arora, S B Purnapatra, A Acharya, A Agarwal, S Yadav, K Pant and A Sen Gupta, IEEE Trans. Instrum. Meas. 62(7), 2036 (2013)

    Google Scholar 

  40. Yu S Domnin, G A Eolkin, A V Novoselov, L N Kopylov, V N Baryshev and V G Pal’chikov, Proc. IEEE IFCS and PDA Exhibition Jointly with the 17th EFTF, 127 (2003)

  41. J M López-Romero, S López-López, E de Carlos-López, N Shtin and F Jiménez-Tapia, Simposio de Metrología (2008)

  42. F U Jun-Xian, C Shuai, C Xu-Zong, Y Dong-Hai and W Yi-Qiu, Chin. Phys. Lett. 18(11), 1457 (2001)

    Google Scholar 

  43. T Y Kwon, H S Lee, S H Yang and S E Park, IEEE Trans. Instrum. Meas. 52(2), 263 (2003)

  44. P T H Fisk, Rep. Prog. Phys. 60(8), 761 (1997)

  45. S A Diddams, T. Udem, J C Bergquist, E A Curtis, R E Drullinger, L Hollberg, W M Itano, 356 W D Lee, C W Oates, K R Vogel and D J Wineland, Science 293, 825 (2001)

    Google Scholar 

  46. M Takamoto, F L Hong, R Higashi and H Katori, Nature 435, 321 (2005)

    Google Scholar 

  47. P Gill, Metrologia 42, 125 (2005)

    Google Scholar 

  48. S Panja, S De, S Chakraborty, H Kohli, N Batra, D K Daniel, A Sinha, P Arora, A Agarwal and A Sen Gupta, Proc. ADMET 2013 (New Delhi, 2013)

  49. A Sen Gupta, P Arora, A Agarwal and K Pant, Curr. Sci. 100(9), 1393 (2011)

  50. P Arora, S Chowdhury, A Agarwal, K Pant and A Sen Gupta, Ind. J. Pure Appl. Phys. 49(9), 590 (2011)

    Google Scholar 

  51. K Pant, P Arora, S Yadav and A Sen Gupta, Mapan – J. Met. Soc. Ind. 26, 285 (2011)

    Google Scholar 

  52. P Arora, A Agarwal and A Sen Gupta, Rev. Sci. Instrum. 82, 125103 (2011)

    Google Scholar 

  53. P Arora and A Sen Gupta, Rev. Sci. Instrum. 83, 046104 (2012)

    Google Scholar 

  54. P Arora, S B Purnapatra, A Acharya, R Kumar and A Sen Gupta, Mapan – J. Met. Soc. Ind. 27 (special issue on Time & Frequency) (2012)

  55. P Arora, P Jha, A Agarwal and A Sen Gupta, Ind. J. Pure Appl. Phys. 50(5), 295 (2012)

    Google Scholar 

  56. K K Pant, P Arora, S Yadav and A Sen Gupta, Ind. J. Pure Appl. Phys. 50, 593 (2012)

    Google Scholar 

  57. A Acharya, R Kumar, S B Purnapatra, K Pant, S Yadav, P Arora and A Sen Gupta, IETE J. Res. 58(5), 382 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to POONAM ARORA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ARORA, P., AWASTHI, A., BHARATH, V. et al. Atomic clocks: A brief history and current status of research in India. Pramana - J Phys 82, 173–183 (2014). https://doi.org/10.1007/s12043-014-0709-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0709-6

Keywords

PACS Nos

Navigation