, Volume 82, Issue 1, pp 59–70 | Cite as

Subwavelength propagation and localization of light using surface plasmons: A brief perspective

  • G V PAVAN KUMAREmail author


Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.


Plasmons surface-enhanced Raman scattering microscopy nanophotonics 


73.20.Mf 78.30.−j 68.37.−d 78.68.+m 


  1. [1]
    P G Kik and M L Brongersma, Surface plasmon nanophotonics, in: Springer series in optical sciences (Springer, Dordrecht, 2007) Vol. 131, p. 1Google Scholar
  2. [2]
    S A Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007)Google Scholar
  3. [3]
    L Novotny and B Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, UK, 2006)Google Scholar
  4. [4]
    S I Bozhevolnyi, Plasmonic nanoguides and circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009)Google Scholar
  5. [5]
    G V P Kumar, J. Nanophoton. 6, 064503 (2012)Google Scholar
  6. [6]
    A V Zayats, Smolyaninov II and A A Maradudin, Phys. Rep. – Rev. Sec. Phys. Lett. 408, 131 (2005)Google Scholar
  7. [7]
    W L Barnes, A Dereux and T W Ebbesen, Nature 424, 824 (2003)Google Scholar
  8. [8]
    G V P Kumar, J. Nanophoton. 6, 06450301 (2012)Google Scholar
  9. [9]
    S Lal et al, Accounts of Chemical Research 45, 1887 (2012)Google Scholar
  10. [10]
    R Chikkaraddy, D Singh and G V P Kumar, Appl. Phys. Lett. 100, 043108 (2012)Google Scholar
  11. [11]
    D Singh, M Raghuwanshi and G V P Kumar, Appl. Phys. Lett. 101, 111111 (2012)Google Scholar
  12. [12]
    S Polali, D Singh and G V P Kumar, J. Phys. D: Appl. Phys. 46, 195107 (2013)Google Scholar
  13. [13]
    P P Patra and G V P Kumar, J. Phys. Chem. Lett. 4, 1167 (2013)Google Scholar
  14. [14]
    S Nie and S R Emory, Science 275, 1102 (1997)Google Scholar
  15. [15]
    E C Le Ru and P G Etchegoin, Ann. Rev. Phys. Chem. 63, 65 (2012)Google Scholar
  16. [16]
    K Kneipp et al, Phys. Rev. Lett. 78, 1667 (1997)Google Scholar
  17. [17]
    J Steidtner and B Pettinger, Phys. Rev. Lett. 100, 236101 (2008)Google Scholar
  18. [18]
    H Xu et al, Phys. Rev. Lett. 83, 4357 (1999)Google Scholar
  19. [19]
    G V P Kumar et al, J. Phys. Chem. C 111, 4388 (2007)Google Scholar
  20. [20]
    G V P Kumar, J. Raman Spectrosc. 40, 2069 (2009)Google Scholar
  21. [21]
    G V P Kumar, Int. J. Nanosci. 11 (2012)Google Scholar
  22. [22]
    G V P Kumar, Appl. Opt. 49, 6872 (2010)Google Scholar
  23. [23]
    G V P Kumar, J. Opt. Soc. Am. B: Opt. Phys. 29, 594 (2012)Google Scholar
  24. [24]
    A Dasgupta and G V P Kumar, Appl. Opt. 51, 1688 (2012)Google Scholar
  25. [25]
    N Mishra and G V P Kumar, Plasmonics 7, 359 (2012)Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

    • 1
    Email author
    • 1
    • 1
    • 1
  1. 1.Photonics and Optical Nanoscopy Laboratory, Departments of Physics and ChemistryIndian Institute of Science Education and ResearchPuneIndia

Personalised recommendations