Skip to main content
Log in

Development of online quasimonochromatic X-ray backlighter for high energy density physics studies

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Monochromatic X-ray backlighting has been employed with great success in various laser plasma experiments including inertial confinement fusion (ICF) research. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and are also expensive. In this paper, we present a quasimonochromatic X-ray backlighting system using flat thallium acid pthalate (TAP) crystal. The detailed characterization of the system is discussed. The X-ray backlighter spectral range is caliberated using Cu spectrum in the spectral range 7–9 Å (1.38–1.77 keV). Gold plasma produces continuous X-ray spectrum (M band) in this range. The spectral, spatial and temporal resolutions of the system measured are 30 mÅ, 50 μm and 1.5 ns respectively. The spectral width of the X-ray pulse is 2 Å (ΔE = 0.39 keV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J D Kilkenny, Phys. Fluids B 2, 1400 (1990)

    Article  ADS  Google Scholar 

  2. B A Remington, S W Haan, S G Glendinning, J D Kilkenny, D H Munro and R J Wallace, Phys. Rev. Lett. 67, 3259 (1991)

    Article  ADS  Google Scholar 

  3. S G Glendinning et al, Rev. Sci. Instrum. 70, 536 (1999)

    Article  ADS  Google Scholar 

  4. S G Glendinning et al, Phys. Rev. Lett. 80, 1904 (1998)

    Article  ADS  Google Scholar 

  5. B Yaakobi, D Shvarts, R Epstein and Q Su, Laser Part. Beams 14, 81 (1996)

    Article  ADS  Google Scholar 

  6. V A Smalyuk et al, Phys. Rev. Lett. 81, 5342 (1998)

    Article  ADS  Google Scholar 

  7. J Balmer et al, Phys. Rev. A 40, 330 (1989)

    Article  ADS  Google Scholar 

  8. C Chenais-Popovics et al, Phys. Rev. A 40, 3194 (1989)

    Article  ADS  Google Scholar 

  9. J Bruneau et al, Phys. Rev. Lett. 65, 1435 (1990)

    Article  ADS  Google Scholar 

  10. A Ravasio et al, Phys. Plasmas 15, 060701 (2008)

    Article  ADS  Google Scholar 

  11. L B Da Silva, P Celliers, G W Collins, K S Budil, N C Holmes, T W Barbee Jr, B A Hammel, J D Kilkenny, R J Wallace, M Ross, R Cauble, A Ng and G Chiu, Phys. Rev. Lett. 78, 483 (1997)

    Article  ADS  Google Scholar 

  12. S A Pikuz, T A Shelkovenko, V M Romanova, D A Hammer, A Y Faenov, V A Dyakin, and T A Pikuz, Rev. Sci. Instrum. 68, 740 (1997)

    Article  ADS  Google Scholar 

  13. D B Sinars et al, Rev. Sci. Instrum. 74, 2202 (2003)

    Article  ADS  Google Scholar 

  14. D B Sinars, G R Bennett, D F Wenger, M E Cuneo, D L Hanson, J L Porter, R G Adams, P K Rambo, D C Rovang and I C Smith, Rev. Sci. Instrum. 75, 3672 (2004)

    Article  ADS  Google Scholar 

  15. H Azechi, S Oda, M Hamano, T Sasaki, T Yamanaka and C Yamanaka, Appl. Phys. Lett. 37, 998 (1980)

    Article  ADS  Google Scholar 

  16. C L S Lewis and J McGlinchey, Opt. Commun. 53, 179 (1985)

    Article  ADS  Google Scholar 

  17. M H Key et al, Phys. Rev. Lett. 41, 1467 (1978)

    Article  ADS  Google Scholar 

  18. J Launspach et al, Nucl. Fusion 21, 100 (1981)

    Article  ADS  Google Scholar 

  19. M H Key et al, Phys. Rev. Lett. 45, 1801 (1980)

    Article  ADS  Google Scholar 

  20. M H Key et al, Opt. Commun. 44, 343 (1983)

    Article  ADS  Google Scholar 

  21. S Chaurasia et al, BARC/2008/E/019, pp. 32–34 (2008) and references therein

  22. V A Boiko, A V Vinogradov, S A Pikuz, I Yu Skoblev and A Ya Faenov, J. Sov. Laser Res. 6, 85 (1985)

    Article  Google Scholar 

  23. A Rossel, L M R Gartside, S Chaurasia, S Tripathi, D S Munda, N K Gupta, L J Dhareshwar, J Gaffney, S J Rose and G J Tallents, J. Phys. B: At. Mol. Opt. Phys. 43, 155403 (2010)

    Article  ADS  Google Scholar 

  24. S Chaurasia, M Kumar, A K Poswal, D S Munda, L J Dhareshwar, R K Kher and G Chourasiya, Nucl. Instrum. Methods in Phys. Res. A 595, 395 (2008)

    Article  ADS  Google Scholar 

  25. S Chaurasia, S Tripathi, P Leshma, C G Murali and J Pasley, Opt. Commun. 308, 169 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support and continuous encouragement received from Dr. S Kailas, Director, Physics Group, BARC. Authors wish to thank Dr S M Sharma, Head, HP&SRD for his valuable time for the technical discussion during the preparation of the manuscript. Authors also wish to acknowledge excellent support provided by Shri C G Murali and Mr Ritesh Sable for the smooth laser operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S CHAURASIA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHAURASIA, S., LESHMA, P. & MUNDA, D.S. Development of online quasimonochromatic X-ray backlighter for high energy density physics studies. Pramana - J Phys 81, 829–838 (2013). https://doi.org/10.1007/s12043-013-0616-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0616-2

Keywords

PACS Nos

Navigation