Skip to main content
Log in

Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By employing a variational method of the Pekar-type, which has different variational parameters in the xy plane and the z-direction, we study the ground and the first excited state energies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic quantum dot (AQD) under an applied magnetic field along the z-direction. The effects of the magnetic field and the electron–phonon coupling strength are taken into account. It is found that the ground and the first excited state energies and the transition frequency are increasing functions of the external applied magnetic field. The ground state and the first excited state energies are decreasing functions, whereas transition frequency is an increasing function of the electron–phonon coupling strength. We find two ways of tuning the state energies and the transition frequency: by adjusting (1) the magnetic field and (2) the electron–phonon coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. N H Bonadeo, J Erland, D Gammon, D Park, D S Katzer and D G Steel, Science 282, 1473 (1998)

    Article  Google Scholar 

  2. Y Nakamura, Y A Pashkin and J S Tsai, Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  3. A N Korotkov and A N Selective, Phys. Rev. B 63, 115403 (2001)

    Article  ADS  Google Scholar 

  4. J M Martinis, S Nam, J Aumentado and C Urbina, Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  5. Y Tokura, W G van der Wiel, T Obata and S Tarucha, Phys. Rev. Lett. 96, 047202 (2006)

    Article  ADS  Google Scholar 

  6. S M De Vasconcellos, S Gordon, M Bichler, T Meier and A Zrenner, Nat. Photon. 4, 545 (2010)

    Article  ADS  Google Scholar 

  7. S S Li, G L Long, F S Bai, S L Feng and H Z Zheng, Proc. Natl. Acad. Sci. USA 98, 11847 (2001)

    Article  ADS  Google Scholar 

  8. S S Li, J B Xia, J L Liu, F H Yang, Z C Niu, S L Feng and H Z Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  9. J L Xiao, Mod. Phys. Lett. B 26, 1250068 (2012)

    Article  ADS  Google Scholar 

  10. S S Li and J B Xia, Appl. Phys. Lett. 91, 092119 (2007)

    Article  ADS  Google Scholar 

  11. A L Vartanian, L A Vardanyan and E M Kazaryan, Physica E 40, 1513 (2008)

    Article  ADS  Google Scholar 

  12. P Kaczmarkiewicz and P Machnikowski, Phys. Rev. B 81, 115317 (2010)

    Article  ADS  Google Scholar 

  13. Z X Yu and Z Y Jiao, Int. J. Theor. Phys. 49, 652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. N K Datta and M Ghosh, Eur. Phys. J. B 80, 95 (2011)

    Article  ADS  Google Scholar 

  15. K M Kumar, A J Peter and C W Lee, Superlatt. Microstruct. 51, 184 (2012)

    Article  ADS  Google Scholar 

  16. R Khordad, Superlatt. Microstruct. 54, 7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. W Xiao and J L Xiao, Int. J. Mod. Phys. B 25, 3485 (2011)

    Article  ADS  MATH  Google Scholar 

  18. L D Landau and S I Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  19. S I Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    Google Scholar 

  20. J El Khamkhami, E Feddi, E Assaid, F Dujardin, B Stebe and M El Haouari, Physica E 25, 366 (2005)

    Article  ADS  Google Scholar 

  21. A L Vartanian, M A Yeranosyan and A A Kirakosyan, Physica B 390, 256 (2007)

    Article  ADS  Google Scholar 

  22. W F Xie, Superlatt. Microstruc. 50, 91 (2011)

    Article  ADS  Google Scholar 

  23. J L Xiao, J. Low. Temp. Phys. 168, 297 (2012)

    Article  ADS  Google Scholar 

  24. C Y Chen and P W Jin, Phys. Rev. B 48, 15905 (1993)

    Article  ADS  Google Scholar 

  25. B S Kandemir and A Cetin, J. Phys.: Condens. Matter 17, 667 (2005)

    Article  ADS  Google Scholar 

  26. V L Nguyen, M T Nguyen and T D Nguyen, Physica B 292, 153 (2000)

    Article  ADS  Google Scholar 

  27. C S Wang and J L Xiao, Mod. Phys. Lett. B 26, 1150003 (2012)

    Article  Google Scholar 

  28. Y Lepine and G Bruneau, J. Phys.: Condens. Matter 10, 1495 (1998)

    Article  ADS  Google Scholar 

  29. B S Kandemir and T Altanhan, Eur. Phys. J. B 33, 227 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Science Foundation of China under Grant No. 10964005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JING-LIN XIAO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

XIAO, W., XIAO, JL. Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot. Pramana - J Phys 81, 865–871 (2013). https://doi.org/10.1007/s12043-013-0614-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0614-4

Keywords

PACS Nos

Navigation