Skip to main content
Log in

Phase transition properties of a cylindrical ferroelectric nanowire

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Based on the transverse Ising model (TIM) and using the mean-field theory, we investigate the phase transition properties of a cylindrical ferroelectric nanowire. Two different kinds of phase diagrams are constructed. We discuss systematically the effects of exchange interactions and the transverse field parameters on the phase diagrams. Moreover, the cross-over features of the parameters from the ferroelectric dominant phase diagram to the paraelectric dominant phase diagram are determined for the ferroelectric nanowire. In addition, the polarizations of the surface shell and the core are illustrated in detail by modifying the TIM parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J Junquera and P Ghosez, Nature 422, 506 (2003)

    Article  ADS  Google Scholar 

  2. Y Luo, I Szafraniak, N D Zakharov, V Nagarajan, M Steinhart, R B Wehrspohn, J H Wendorff, R Ramesh and M Alexe, Appl. Phys. Lett. 83, 440 (2003)

    Article  ADS  Google Scholar 

  3. M W Chu, I Szafraniak, R Scholz, C Harnagea, D Hesse, M Alexe and U Gosele, Nat. Mater. 3, 87 (2004)

    Article  ADS  Google Scholar 

  4. A Roelofs, I Schneller, K Szot and R Waser, Appl. Phys. Lett. 81, 5231 (2002)

    Article  ADS  Google Scholar 

  5. Y Wang and J J Santiago-Aviles, Nanotechnol. 15, 32 (2004)

    Article  ADS  Google Scholar 

  6. J F Scott, F D Morrison, M Miyake and P Zubko, Ferroelectrics 336, 237 (2006)

    Article  Google Scholar 

  7. B J Rodriguez, X S Gao, L F Liu, W Lee, I I Naumov, A M Bratkovsky, D Hesse and M Alexe, Nano Lett. 9, 1127 (2009)

    Article  ADS  Google Scholar 

  8. J W Hong and D N Fang, Appl. Phys. Lett. 92, 012906 (2008)

    Article  ADS  Google Scholar 

  9. G Pilania, S P Alpay and R Ramprasad, Phys. Rev . B 80, 014113 (2009)

    Article  ADS  Google Scholar 

  10. D R Tilly and B Zěkš, Solid State Commun. 49, 823 (1984)

    Article  ADS  Google Scholar 

  11. D Schwenk, F Fishman and F Schwabl, Phys. Rev . B 38, 11618 (1988)

    Article  ADS  Google Scholar 

  12. D Schwenk, F Fishman and F Schwabl, Ferroelectrics 104, 349 (1990)

    Article  Google Scholar 

  13. D Schwenk, F Fishman and F Schwabl, J. Phys.: Condense. Matter 2, 5409 (1990)

    Article  ADS  Google Scholar 

  14. W L Zhong, Y G Wang, P L Zhang and B D Qu, Phys. Rev . B 50, 698 (1994)

    Article  ADS  Google Scholar 

  15. Y G Wang, W L Zhong and P L Zhang, Solid State Commun. 90, 329 (1994)

    Article  ADS  Google Scholar 

  16. C L Wang, W L Zhong and P L Zhang, J. Phys.: Condens. Matter 4, 4743 (1992)

    Article  Google Scholar 

  17. B H Teng and H K Sy, Physica B 348, 485 (2004)

    Article  ADS  Google Scholar 

  18. Baohua Teng and H K Sy, Phys. Rev . B 70, 104115-1 (2004)

  19. A Tabyaoui, A Ainane, B Movaghar and M Saber, Physica A 329, 377 (2003)

  20. B D Qu and P L Zhang, Ferroelectrics 197, 23 (1997)

    Article  Google Scholar 

  21. W L Zhong, Solid State Commun. 122, 311 (2002)

    Article  ADS  Google Scholar 

  22. X Yang, Y Wang, C K Wang and Q G Song, Solid State Commun. 151, 1833 (2011)

    Article  ADS  Google Scholar 

  23. C L Wang, Y Xin, X S Wang and W L Zhong, Phys. Rev . B 62, 11423 (2000)

    Article  ADS  Google Scholar 

  24. R Blinc and B Zeks, Soft modes in ferroelectrics and antiferroelectrics (North-Holland, Amsterdam, 1974)

  25. T Kaneyoshi, J. Magn. Magn. Mater. 322, 3014 (2010)

    Article  ADS  Google Scholar 

  26. T Kaneyoshi, J. Magn. Magn. Mater. 322, 3410 (2010)

    Article  ADS  Google Scholar 

  27. T Kaneyoshi, J. Magn. Magn. Mater. 323, 1145 (2011)

    Article  ADS  Google Scholar 

  28. T Kaneyoshi, Phys. Status Solidi B 248, 250 (2011)

    Article  ADS  Google Scholar 

  29. C D Wang, Z Z Lu, W X Yuan, S Y Kwok and B H Teng, Phys. Lett. A 375, 3405 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation of Civil Aviation University of China (No. 09QD10X), by the Fundamental Research Funds for the Central Universities (ZXH2012N005) and by the 2012 Basic Operational Outlays for the Research Activities of Centric University, Civil Aviation University of China (Grant No. ZXH2012K006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YANG XIONG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

YING, W., XIONG, Y. Phase transition properties of a cylindrical ferroelectric nanowire. Pramana - J Phys 81, 873–883 (2013). https://doi.org/10.1007/s12043-013-0611-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0611-7

Keywords

PACS Nos

Navigation