Skip to main content
Log in

Boson bound states in the β-Fermi–Pasta–Ulam model

  • Published:
Pramana Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2014

Abstract

The bound states of four bosons in the quantum β-Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S Flach and A V Gorbach, Phys. Rep. 467, 1 (2008)

    Article  ADS  Google Scholar 

  2. P Maniadis, B S Alexandrov, A R Bishop and K Ø Rasmussen, Phys. Rev. E 83, 011904 (2011)

    Article  ADS  Google Scholar 

  3. H Hennig, J Dorignac and D K Campbell, Phys. Rev. A 82, 053604 (2010)

    Article  ADS  Google Scholar 

  4. N Boechler, G Theocharis, S Job, P G Kevrekidis, M A Porter and C Daraio, Phys. Rev. Lett. 104, 244302 (2010)

    Article  ADS  Google Scholar 

  5. E Trías, J J Mazo and T P Orlando, Phys. Rev. Lett. 84, 741 (2000)

    Article  ADS  Google Scholar 

  6. M Sato, B E Hubbard, A J Sievers, B Ilic, D A Czaplewski and H G Craighead, Phys. Rev . Lett. 90, 044102 (2003)

    Article  ADS  Google Scholar 

  7. J C Eilbeck, H Gilhøj and A C Scott, Phys. Lett. A 172, 229 (1993)

    Article  ADS  Google Scholar 

  8. A C Scott, J C Eilbeck and H Gilhøj, Physica D: Nonlinear Phenomena 78, 194 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. W Z Wang, J T Gammel, A R Bishop and M I Salkola, Phys. Rev . Lett. 76, 3598 (1996)

    Article  ADS  Google Scholar 

  10. L Proville, Physica D: Nonlinear Phenomena 216, 191 (2006)

    Article  ADS  MATH  Google Scholar 

  11. L Proville, Phys. Rev . B 71, 104306 (2005)

    Article  ADS  Google Scholar 

  12. Z Ivić and G P Tsironis, Physica D: Nonlinear Phenomena 216, 200 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. J P Nguenang, R A Pinto and S Flach, Phys. Rev . B 75, 214303 (2007)

    Article  ADS  Google Scholar 

  14. J P Nguenang and S Flach, Phys. Rev . A 80, 015601 (2009)

    Article  ADS  Google Scholar 

  15. L S Schulman, D Tolkunov and E Mihóková, Chem. Phys. 322, 55 (2006)

    Article  ADS  Google Scholar 

  16. L S Schulman, D Tolkunov and E Mihokova, Phys. Rev . Lett. 96, 065501 (2006)

    Article  ADS  Google Scholar 

  17. L Proville, Europhys. Lett. 69, 763 (2005)

    Article  ADS  Google Scholar 

  18. H Xin-Guang and T Yi, Chin. Phys. B 17, 4268 (2008)

    Article  ADS  Google Scholar 

  19. V Pouthier, Phys. Rev . E 68, 021909 (2003)

    Article  ADS  Google Scholar 

  20. C Falvo and V Pouthier, J. Chem. Phys. 123, 184710 (2005)

    Article  ADS  Google Scholar 

  21. Z I Djoufack, A Kenfack-Jiotsa, J P Nguenang and S Domngang, J. Phys.: Condens. Matter 22, 205502 (2010)

    ADS  Google Scholar 

  22. R Honke, P Jakob, Y J Chabal, A Dvořák, S Tausendpfund, W Stigler, P Pavone, A P Mayer and U Schröder, Phys. Rev . B 59, 10996 (1999)

    Article  ADS  Google Scholar 

  23. P Guyot-Sionnest, Phys. Rev . Lett. 67, 2323 (1991)

    Article  ADS  Google Scholar 

  24. R P Chin, X Blase, Y R Shen and S G Louie, Europhys. Lett. 30, 399 (1995)

    Article  ADS  Google Scholar 

  25. G Theocharis, N Boechler, P G Kevrekidis, S Job, M A Porter and C Daraio, Phys. Rev . E 82, 056604 (2010)

    Article  ADS  Google Scholar 

  26. V Pouthier, Phys. Rev . B 71, 115401 (2005)

    Article  ADS  Google Scholar 

  27. J C Eilbeck and F Palmero, Phys. Lett. A 331, 201 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. J Dorignac, J C Eilbeck, M Salerno and A C Scott, Phys. Rev . Lett. 93, 025504 (2004)

    Article  ADS  Google Scholar 

  29. A J Sievers and S Takeno, Phys. Rev . Lett. 61, 970 (1988)

    Article  ADS  Google Scholar 

  30. Z-P Shi and G Huang, Phys. Rev . B 44, 12601 (1991)

    Article  ADS  Google Scholar 

  31. P S Riseborough, Phys. Rev . E 85, 011129 (2012)

    Article  ADS  Google Scholar 

  32. R L Sonone and S R Jain, Eur. Phys. J. Special Topics 222, 601 (2013)

    Article  ADS  Google Scholar 

  33. W H Press, S A Teukolsky, W T Vetterling and B P Flannery, Numerical recipes in FORTRAN (Cambridge University Press, 1992) pp. 462–475

Download references

Acknowledgement

The authors would like to thank Dr Li Shihua and Zhang Jun for interesting comments and suggestions. The work has been supported by the scientific research project of Huangshan University under Grant No. 2011xkj007 and the Project of Anhui Provincial Educational Department of China under Grant No. KJ2011Z363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JU XIANG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HU, XG., XIANG, J., JIAO, Z. et al. Boson bound states in the β-Fermi–Pasta–Ulam model. Pramana - J Phys 81, 839–848 (2013). https://doi.org/10.1007/s12043-013-0610-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0610-8

Keywords

PACS Nos

Navigation