Skip to main content
Log in

Fundamental modes of new dispersive SH-waves in piezoelectromagnetic plate

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Fundamental modes of new dispersive shear-horizontal (SH) acoustic waves propagating in the (6 mm) piezoelectromagnetic plate are studied. These SH-waves can propagate when the following boundary conditions are exploited for both the upper and lower surfaces of the plate: (1) when the surfaces are mechanically free, electrically and magnetically closed and (2) when the surfaces are mechanically free, electrically and magnetically open. The SH-waves depend on the electromagnetic wave speed \(V_{\rm EM} =1/ {\sqrt {(\varepsilon\mu)}}\) and can only exist when the electromagnetic constant \(\alpha \ne 0\). The calculations (first evidence) were performed for the PZT-5H–Terfenol-D which is a composite with a large value of α. The limit cases of large values of α (α 2 = 0.5εμ, α 2 = 0.9εμ, and α 2 = 0.99εμ) are studied because they satisfy the limitation condition of α 2 < εμ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Ü Özgür, Ya Alivov and H Morkoç, J. Mater. Sci.: Mater. Electron. 20, 911 (2009)

    Google Scholar 

  2. M Fiebig, J. Phys. D: Appl. Phys. 38(8), R123 (2005)

    Article  ADS  Google Scholar 

  3. M Fiebig, V V Pavlov and R V Pisarev, J. Opt. Soc. Am. B 22(1), 96 (2005)

    Article  ADS  Google Scholar 

  4. T Kimura, Ann. Rev . Condens. Matter Phys. 3(1), 93 (2012)

    Article  Google Scholar 

  5. Ch-S Park and Sh Priya, Adv ances in condensed matter physics (Hindawi Publishing Corporation, 2012) Vol. 2012, 12 pages

  6. R C Pullar, Prog. Mater. Sci. 57(7), 1191 (2012)

    Article  Google Scholar 

  7. M I Bichurin, V M Petrov and R V Petrov, J. Magn. Magn. Mater. 324(21), 3548 (2012)

    Article  ADS  Google Scholar 

  8. A A Zakharenko, Canad. J. Pure & Appl. Sci. (SENRA Academic Publishers) 7(1), 2227 (2013), ISSN: 1715-9997

  9. T Chen, S Li and H Sun, Sensors (MDPI) 12(3), 2742 (2012)

    Article  Google Scholar 

  10. M Bichurin, V Petrov, A Zakharov, D Kovalenko, S Ch Yang, D Maurya, V Bedekar and Sh Priya, Materials 2011(4), 651 (2011)

  11. G Srinivasan, Ann. Rev . Mater. Res. 40(1), 153 (2010)

    Article  ADS  Google Scholar 

  12. J Zhai, Z-P Xing, Sh-X Dong, J-F Li and D Viehland, J. Am. Ceram. Soc. 91(2), 351 (2008)

  13. C W Nan, M I Bichurin, S X Dong, D Viehland and G Srinivasan, J. Appl. Phys. 103(3), 031101 (2008)

    Article  Google Scholar 

  14. W Eerenstein, N D Mathur and J F Scott, Nature 442(7104), 759 (2006)

    Article  ADS  Google Scholar 

  15. N A Spaldin and M Fiebig, Science 309(5733), 391 (2005)

    Article  Google Scholar 

  16. D I Khomskii, J. Magn. Magn. Mater. 306(1), 1 (2006)

    Article  ADS  Google Scholar 

  17. S-W Cheong and M Mostovoy, Nature Mater. 6(1), 13 (2007)

    Article  ADS  Google Scholar 

  18. R Ramesh and N A Spaldin, Nature Mater. 6(1), 21 (2007)

    Article  ADS  Google Scholar 

  19. T Kimura, Ann. Rev . Mater. Res. 37(1), 387 (2007)

    Article  ADS  Google Scholar 

  20. T Kimura, T Goto, H Shintani, K Ishizaka, T Arima and Y Tokura, Nature 426(6962), 55 (2003)

    Article  ADS  Google Scholar 

  21. K F Wang, J-M Liu and Z F Ren, Adv . Phys. 58(4), 321 (2009)

    Article  ADS  Google Scholar 

  22. R Ramesh, Nature 461(7268), 1218 (2009)

    Article  ADS  Google Scholar 

  23. K T Delaney, M Mostovoy and N A Spaldin, Phys. Rev . Lett. 102(15), 157203 (2009)

    Article  ADS  Google Scholar 

  24. S C B Gopinath, K Awazu and M Fujimaki, Sensors (MDPI) 12(2), 2136 (2012)

    Article  Google Scholar 

  25. A Fert, Rev . Mod. Phys. 80(4), 1517 (2008)

    Article  ADS  Google Scholar 

  26. A Fert, Physics – Uspekhi (Moscow) 51(12), 1336 (2008)

    Article  Google Scholar 

  27. C Chappert and J-V Kim, Nature Phys. 4(11), 837 (2008)

    Article  ADS  Google Scholar 

  28. M Bibes and A Barthélémy, Nature Mater. 7(6), 425 (2008)

  29. W Prellier, M P Singh and P Murugavel, J. Phys.: Condens. Matter 17(30), R803 (2005)

  30. M I Bichurin, V M Petrov, D A Filippov, G Srinivasan and S V Nan, Magnetoelectric materials (Academia Estestvoznaniya Publishers, Moscow, 2006)

  31. Y K Fetisov, A A Bush, K E Kamentsev, A Y Ostashchenko and G Srinivasan, The IEEE Sensor J. 6(4), 935 (2006)

  32. G Srinivasan and Y K Fetisov, Integrated Ferroelectrics 83(1), 89 (2006)

    Google Scholar 

  33. S Priya, R A Islam, S X Dong and D Viehland, J. Electroceram. 19(1), 147 (2007)

  34. R Grossinger, G V Duong and R Sato-Turtelli, J. Magn. Magn. Mater. 320(14), 1972 (2008)

    Google Scholar 

  35. C W Ahn, D Maurya, C S Park, S Nahm and S Priya, J. Appl. Phys. 105(11), 114108 (2009)

  36. V M Petrov, M I Bichurin, V M Laletin, N Paddubnaya and G Srinivasan, Modeling of magnetoelectric effects in ferromagnetic/piezoelectric bulk composites, in: Proceedings of the 5th International Conference on Magnetoelectric Interaction Phenomena in Crystals (MEIPIC-5) (Sudak, Ukraine, 21–24 September 2003), arXiv:cond-mat/0401645

  37. G Harshe, J P Dougherty and R E Newnham, Int. J. Appl. Electromag. Mater. 4(1), 161 (1993)

    Google Scholar 

  38. Y H Chu, L W Martin, M B Holcomb and R Ramesh, Mater. Today 10(10), 16 (2007)

  39. H Schmid, Bull. Mater. Sci. 17(7), 1411 (1994)

    Google Scholar 

  40. J Ryu, Sh Priya, K Uchino and H-E Kim, J. Electroceram. 8(2), 107 (2002)

  41. D Fang, Yo-P Wan, X Feng and A K Soh, ASME Appl. Mech. Rev. 61(2), 020803 (2008)

    Article  Google Scholar 

  42. A Sihvola, Metamater. 1(1), 2 (2007)

    Article  ADS  Google Scholar 

  43. N A Hill (N A Spaldin) J. Phys. Chem. B 104(29), 6697 (2000)

  44. G A Smolenskii and I E Chupis, Sov . Phys. Uspekhi (Moscow) 25(7), 475 (1982)

    Article  ADS  Google Scholar 

  45. A M Shuvaev, S Engelbrecht, M Wunderlich, A Schneider and A Pimenov, Eur. Phys. J. B 79(2), 163 (2011)

    Article  ADS  Google Scholar 

  46. W T Chen, Ch J Chen, P Ch Wu, Sh Sun, L Zhou, G-Y Guo, Ch T Hsiao, K-Y Yang, N I Zheludev and D P Tsai, Opt. Express 19(13), 12837 (2011)

  47. H J A Molegraaf, J Hoffman, C A F Vaz, S Gariglio, D van der Marel, C H Ah and J-M Triscone, Adv . Mater. 21(34), 3470 (2009)

    Article  Google Scholar 

  48. M Fiebig, Magnetoelectric correlations in multiferroic manganites revealed by nonlinear optics, in: Adv ances in solid state physics (Springer-Verlag, Berlin-Heidelberg, 2007) Vol. 46, pp. 255–267

  49. J H Jung, J. Korean Phys. Soc. 46(2), 508 (2005)

    Google Scholar 

  50. Sh Ju and G-Y Guo, Appl. Phys. Lett. 92(20), 202504 (2008)

  51. T Arima, J. Phys.: Condens. Matter 20(43), 434211 (2008)

    Article  ADS  Google Scholar 

  52. C M Wei, H Y Shih, Y F Chen and T Y Lin, Appl. Phys. Lett. 98(13), 131913 (2011)

    Article  ADS  Google Scholar 

  53. A A Zakharenko, Thirty two new SH-wav es propagating in PEM plates of class 6 mm (Saarbruecken–Krasnoyarsk, LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012) 162 pages

  54. R Ribichini, F Cegla, P B Nagy and P Cawley, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57(12), 2808 (2010)

    Article  Google Scholar 

  55. R B Thompson, Physical principles of measurements with EMAT transducers, in: Physical acoustics edited by W P Mason and R N Thurston (Academic Press, New York, 1990) Vol. 19, pp. 157–200

  56. M Hirao and H Ogi, EMATs for science and industry: Non-contacting ultrasonic measurements (Kluwer Academic, Boston, MA, 2003)

  57. Yu V Gulyaev, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45(4), 935 (1998)

  58. C Lardat, C Maerfeld and P Tournois, Proceedings of the IEEE 59(3), 355 (1971)

    Article  Google Scholar 

  59. E Dieulesaint and D Royer, Elastic wav es in solids: Applications to signal processing, translated by A Bastin, M Motz and Chichester (English) (J Wiley, New York, 1980) 511 pages

  60. A A Zakharenko, Propagation of sev en new SH-SAWs in piezoelectromagnetics of class 6 mm (Saarbruecken–Krasnoyarsk, LAP LAMBERT Academic Publishing GmbH & Co. KG, 2010) 84 pages

  61. A A Zakharenko, Twenty two new interfacial SH-wav es in dissimilar PEMs (Saarbruecken– Krasnoyarsk, LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012) 148 pages

  62. V I Al’shits, A N Darinskii and J Lothe, Wave Motion 16(3), 265 (1992)

    Article  Google Scholar 

  63. A A Zakharenko, Pramana – J. Phys. 79(2), 275 (2012)

    Article  ADS  Google Scholar 

  64. B A Auld, Acoustic fields and wav es in solids, 2nd edn (Krieger Publishing Company, 1990) Volumes I and II (set of two volumes) 878 pages

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A ZAKHARENKO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZAKHARENKO, A.A. Fundamental modes of new dispersive SH-waves in piezoelectromagnetic plate. Pramana - J Phys 81, 819–827 (2013). https://doi.org/10.1007/s12043-013-0609-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0609-1

Keywords

PACS Nos

Navigation