Skip to main content
Log in

Elastic scattering and fusion cross-sections in 7Li + 27Al reaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

With an aim to understand the effects of breakup and transfer channels on elastic scattering and fusion cross-sections in the 7Li + 27Al reaction, simultaneous measurement of elastic scattering angular distributions and fusion cross-sections have been carried out at various energies (E lab = 8.0–16.0 MeV) around the Coulomb barrier. Optical model (OM) analysis of the elastic scattering data does not show any threshold anomaly or breakup threshold anomaly behaviour in the energy dependence of the real and imaginary parts of the OM potential. Fusion cross-section at each bombarding energy is extracted from the measured α-particle evaporation energy spectra at backward angles by comparing with the statistical model prediction. Results on fusion cross-sections from the present measurements along with data from the literature have been compared with the coupled-channels predictions. Detailed coupled-channels calculations have been carried out to study the effect of coupling of breakup, inelastic and transfer, channels on elastic scattering and fusion. The effect of 1n-stripping transfer coupling was found to be significant compared to that of the projectile breakup couplings in the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Y Tokimoto et al, Phys. Rev . C 63, 035801 (2001)

    Article  ADS  Google Scholar 

  2. N Keeley et al, Prog. Part. Nucl. Phys. 59, 579 (2007)

    Article  ADS  Google Scholar 

  3. E A Benjamim et al, Phys. Lett. B 647, 30 (2007)

    Article  ADS  Google Scholar 

  4. L F Canto, P R S Gomes, R Donangelo and M S Hussein, Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

  5. G R Satchler, Phys. Rep. 199, 147 (1991)

    Article  ADS  Google Scholar 

  6. D Patel et al, AIP Conf. Proc. 1524, 171 (2013)

    Article  ADS  Google Scholar 

  7. M A Nagarajan, C C Mahaux and G R Satchler, Phys. Rev . Lett. 54, 1136 (1985)

    Article  ADS  Google Scholar 

  8. S Santra et al, Phys. Rev . C 60, 034611 (1999)

    Article  ADS  Google Scholar 

  9. M E Brandan and G R Satchler, Phys. Rep. 285, 143 (1997)

    Article  ADS  Google Scholar 

  10. N N Deshmukh et al, Phys. Rev . C 83, 024607 (2011)

    Article  ADS  Google Scholar 

  11. S Santra, S Kailas, K Ramachandran, V V Parkar, V Jha, B J Roy and P Shukla, Phys. Rev . C 83, 034616 (2011)

    Article  ADS  Google Scholar 

  12. L Fimiani et al, Phys. Rev . C 86, 044607 (2012)

    Article  ADS  Google Scholar 

  13. S B Moraes et al, Phys. Rev . C 61, 064608 (2000)

    Article  ADS  Google Scholar 

  14. S Mukherjee et al, Eur. Phys. J. A 45, 23 (2010)

    Article  ADS  Google Scholar 

  15. A Pakou et al, Phys. Lett. B 556, 21 (2003)

    Article  ADS  Google Scholar 

  16. J M Figueira et al, Phys. Rev . C 81, 024613 (2010)

    Article  ADS  Google Scholar 

  17. N N Deshmukh et al, Eur. Phys. J. A 47, 118 (2011)

    Article  ADS  Google Scholar 

  18. A M M Maciel et al, Phys. Rev . C 59, 2103 (1999)

    Article  ADS  Google Scholar 

  19. R J Woolliscroft, B R Fulton, R L Cowin, M Dasgupta, D J Hinde, C R Morton and A C Berriman, Phys. Rev . C 69, 044612 (2004)

    Article  ADS  Google Scholar 

  20. N Keeley, S J Bennett, N M Clarke, B R Fulton, G Tungate, P V Drumm, M A Nagarajan and J S Lilley, Nucl. Phys. A 571, 326 (1994)

    Article  ADS  Google Scholar 

  21. C Signorini et al, Phys. Rev . C 61, 061603 (2000)

    Article  ADS  Google Scholar 

  22. P R S Gomes et al, J. Phys. G 31, S1669 (2005)

    Article  Google Scholar 

  23. P R S Gomes et al, Phys. Rev . C 70, 054605 (2004)

    Article  ADS  Google Scholar 

  24. E F Aguilera et al, Phys. Rev . C 79, 021601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. A R Garcia, J Lubian, I Padron, P R S Gomes, T Lacerda, V N Garcia, A Gomez Camacho and E F Aguilera, Phys. Rev . C 76, 067603 (2007)

    Article  ADS  Google Scholar 

  26. K Rusek, Eur. Phys. J. A 41, 399 (2009)

    Article  ADS  Google Scholar 

  27. A Pakou et al, Phys. Rev . C 69, 054602 (2004)

    Article  ADS  Google Scholar 

  28. J M Figueira et al, Phys. Rev . C 73, 054603 (2006)

    Article  ADS  Google Scholar 

  29. M Dasgupta et al, Phys. Rev . L 82, 1395 (1999)

    Article  ADS  Google Scholar 

  30. V V Parkar et al, Phys. Rev . C 82, 054601 (2010)

    Article  ADS  Google Scholar 

  31. P K Rath et al, Phys. Rev . C 79, 051601R (2009)

    Article  ADS  Google Scholar 

  32. P K Rath et al, Nucl. Phys. A 874, 14 (2012)

    Article  ADS  Google Scholar 

  33. C S Palshetkar et al, Phys. Rev . C 82, 044608 (2010)

    Article  ADS  Google Scholar 

  34. V Jha and S Kailas, Phys. Rev . C 80, 034607 (2009)

    Article  ADS  Google Scholar 

  35. Y W Wu, Z H Liu, C J Lin, H Q Zhang, M Ruan, F Yang, Z C Li, M Trotta and K Hagino, Phys. Rev . C 68, 044605 (2003)

  36. V Tripathi, A Navin, K Mahata, K Ramachandran, A Chatterjee and S Kailas, Phys. Rev . Lett. 88, 172701 (2002)

    Google Scholar 

  37. Yu E Penionzhkevich, V I Zagrebaev, S M Lukyanov and R Kalpakchieva, Phys. Rev . Lett. 96, 162701 (2006)

  38. M Dasgupta et al, Phys. Rev . C 66, 041602(R) (2002)

  39. R M Anjos et al, Phys. Lett. B 534, 45 (2002)

  40. P R S Gomes et al, Phys. Lett. B 601, 20 (2004)

  41. M Ray et al, Phys. Rev . C 78, 064617 (2008)

  42. L C Dennis, K M Abdo, A D Frawley and K W Kemper, Phys. Rev . C 26, 981 (1982)

  43. A Mukherjee, U Datta Pramanik, S Chattopadhyay, M Saha Sarkar, A Goswami, P Basu, S Bhattacharya, M L Chatterjee and B Dasmahapatra, Nucl. Phys. A 635, 305 (1998)

    Google Scholar 

  44. A Mukherjee, U Datta Pramanik, M Saha Sarkar, A Goswami, P Basu, S Bhattacharya, S Sen, M L Chatterjee and B Dasmahapatra, Nucl. Phys. A 596, 299 (1996)

    Google Scholar 

  45. J F Mateja, J Garman, D E Fields, R L Kozub, A D Frawley and L C Dennis, Phys. Rev . C 30, 134 (1984)

  46. A Mukherjee, U Datta Pramanik, S Chattopadhyay, M Saha Sarkar, A Goswami, P Basu, S Bhattacharya, M L Chatterjee and B Dasmahapatra, Nucl. Phys. A 645, 13 (1999)

    Article  ADS  Google Scholar 

  47. Mandira Sinha et al, Phys. Rev . C 76, 027603 (2007)

    Article  ADS  Google Scholar 

  48. M Hugi et al, Nucl. Phys. A 368, 173 (1981)

    Article  ADS  Google Scholar 

  49. I Padron et al, Phys. Rev . C 66, 044608 (2002)

  50. K Kalita et al, Phys. Rev . C 73, 024609 (2006)

  51. E de Barbara et al, AIP Conf. Proc. 884, 189 (2007), DOI: 10.1063/1.2710578

    Google Scholar 

  52. V V Parkar, K Mahata, S Santra, S Kailas, A Shrivastava, K Ramachandran, A Chatterjee, V Jha and P Singh, Nucl. Phys. A 792, 187 (2007)

  53. J Raynal, Phys. Rev . C 23, 2571 (1981)

    Article  ADS  Google Scholar 

  54. C Mahaux, H Ngo and G R Satchler, Nucl. Phys. A 449, 354 (1986)

    Article  ADS  Google Scholar 

  55. D H Luong, M Dasgupta, D J Hinde, R du Rietz, R Rafiei, C J Lin, M Evers and A Diaz-Torres, Phys. Lett. B 695, 105 (2011)

    Article  ADS  Google Scholar 

  56. A Gavron, Phys. Rev . C 21, 230 (1980)

    Article  ADS  Google Scholar 

  57. K Hagino, N Rowley and A T Kruppa, Comput. Phys. Commun. 123, 143 (1999)

    Article  ADS  MATH  Google Scholar 

  58. D Abriola et al, Nucl. Instrum. Methods Phys. Res. B 268, 1793 (2010)

    Google Scholar 

  59. I J Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  60. K W Kemper, A W Qbst and R L Whit, Phys. Rev . C 6, 6 (1972)

    Google Scholar 

  61. P Schwandt, Ronald E Brown, F D Correll, R A Hardekopf and G G Ohlsen, Phys. Rev . C 26, 369 (1982)

    Article  ADS  Google Scholar 

  62. J Lubian et al, Nucl. Phys. A 791, 24 (2007)

  63. A A Rudchik et al, Phys. Rev . C 72, 034608 (2005)

Download references

Acknowledgements

The authors would like to thank FOTIA staff at BARC for their cooperation during the experiment and Dr S Kailas for fruitful discussions. D Patel and S Mukherjee gratefully acknowledge the financial support from DAE-BRNS (No. 2008/37/42) through a major research project. V V Parkar acknowledges the financial support of INSPIRE Faculty Award, Department of Science and Technology, Govt. of India for carrying out these investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D PATEL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

PATEL, D., SANTRA, S., MUKHERJEE, S. et al. Elastic scattering and fusion cross-sections in 7Li + 27Al reaction. Pramana - J Phys 81, 587–602 (2013). https://doi.org/10.1007/s12043-013-0597-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0597-1

Keywords

PACS

Navigation