Skip to main content
Log in

Oscillation death in a coupled van der Pol–Mathieu system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report an investigation of the oscillation death (OD) of a parametrically excited coupled van der Pol–Mathieu (vdPM) system. The system can be considered as a pair of harmonically forced van der Pol oscillators under a double-well potential. The two oscillators are coupled with a cubic nonlinearity. We have shown that the system arrives at an OD regime when coupling strength crosses a threshold value at which the system undergoes saddle-node bifurcation and two limit cycles coalesce onto a fixed point of the system. We have further shown that this nonautonomous system possesses a centre manifold corresponding to the OD regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A T Winfree, J. Theor. Biol. 16, 15 (1967)

    Article  Google Scholar 

  2. M G Rosenblum and A S Pikovsky, Phys. Rev. Lett. 92, 114102 (2004)

    Article  ADS  Google Scholar 

  3. S H Strogatz, Physica D 143, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. G B Ermentrout and N Kopell, SIAM J. Appl. Math. 50, 125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. K Konishi, Phys. Rev. E 68, 067202 (2003)

    Article  ADS  Google Scholar 

  6. A Prasad, M Dhamala, N M Adhikari and R Ramaswamy, Phys. Rev. E 81, 027201 (2010)

    Article  ADS  Google Scholar 

  7. Y Kuramoto, Chemical oscillations, waves, and turbulence (Dover, 2003)

  8. K Bar-Eli, Physica D 14, 242 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  9. D V Ramana Reddy, A Sen and G L Johnston, Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  10. R Karnatak, R Ramaswamy and A Prasad, Phys. Rev. E 76, 035201(R) (2007)

    Article  ADS  Google Scholar 

  11. A N Pisarchik, Phys. Lett. A 318, 65 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. V Resmi, G Ambika and R E Amritkar, Phys. Rev. E 84, 046212 (2011)

    Article  ADS  Google Scholar 

  13. V Resmi, G Ambika, R E Amritkar and G Rangarajan, Phys. Rev. E 85, 046211 (2012)

    Article  ADS  Google Scholar 

  14. R Karnatak, N Punetha, A Prasad and R Ramaswamy, Phys. Rev. E 82, 046219 (2010)

    Article  ADS  Google Scholar 

  15. A Prasad, S K Dana, R Karnatak, J Kurths and B Blasius et al, Chaos 18, 023111 (2008)

    Article  ADS  Google Scholar 

  16. M Stich, A C Casal and J I Diaz, Phys. Rev. E 76, 036209 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. H Sakaguchi and D Tanaka, Phys. Rev. E 76, 025201 (2007)

    Article  ADS  Google Scholar 

  18. G Saxena, A Prasad and R Ramaswamy, Phys. Rep. 521, 205 (2012) and references therein.

    Article  ADS  Google Scholar 

  19. A Pikovsky, M Rosenblum and J Kurths, Synchronization: A universal concept in nonlinear science (Cambridge, New York, 2001)

    Book  Google Scholar 

  20. M P Bora and D Sarmah, Proceedings of the Fifth National Conference on Nonlinear Systems and Dynamics (Kolkota, 2009), http://ncnsd.org/proceedings/proceeding09/Paper/40.pdf

  21. Y Saitou and T Honzawa, Proceedings of the International Congress on Plasma Physics and 25th EPS Conference on Fusion Plasma Physics (Prague, 1998)

  22. M R Jana, A Sen and P K Kaw, Phys. Rev. E 48, 3930 (1993)

    Article  ADS  Google Scholar 

  23. A N Pisarchick and B K Goswami, Phys. Rev. Lett. 84, 1423 (2000)

    Article  ADS  Google Scholar 

  24. E J Doedel et al, AUTO 2000: Continuation and Bifurcation Software for Ordinary Differential Equations, http://indy.cs.concordia.ca/auto/

  25. B Ermentrout, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students (Cambridge, 1987)

  26. J Hale and H Koçak, Dynamics and bifurcations (Springer-Verlag, 1991)

  27. J Guckenheimer and P Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer-Verlag, New York, 1983)

    Book  MATH  Google Scholar 

  28. J J S Vargas, J A Gonzalez, A Stefanovaska and P V E McClintock, Europhys. Lett. 85, 38008 (2009)

    Article  ADS  Google Scholar 

  29. Y A Kuznetsov, Elements of applied bifurcation theory (Springer, 1998)

  30. G H Goldstein, F Broner and S H Strogatz, SIAM J. Appl. Math. 57, 1163 (1997)

    Article  MathSciNet  Google Scholar 

  31. Mathematica website, http://www.wolfram.com/mathematica/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MADHURJYA P BORA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BORA, M.P., SARMAH, D. Oscillation death in a coupled van der Pol–Mathieu system. Pramana - J Phys 81, 677–690 (2013). https://doi.org/10.1007/s12043-013-0595-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0595-3

Keywords

PACS Nos

Navigation