Skip to main content
Log in

Effect of nonthermal distributed electrons and temperature on phase shifts during the collision of inward and outward ion-acoustic solitary waves in nonplanar geometry

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions is investigated using the extended version of Poincaré–Lighthill–Kuo (PLK) perturbation method. How the interactions are taking place in cylindrical and spherical geometries are shown numerically. Analytical phase shifts are derived for nonplanar geometry. The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G P Agrawal, Nonlinear fiber optics (Academic, New York, 1989)

    Google Scholar 

  2. A Hasegawa, Optical solitons in fibers (Springer, Berlin, 1989)

    Book  Google Scholar 

  3. K Yoshimura and S Watanabe, J. Phys. Soc. Jpn. 60, 82 (1991)

    Article  ADS  Google Scholar 

  4. V V Konotop, Phys. Rev . E 53, 2843 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. K Hashimoto and M Ono, J. Phys. Soc. Jpn. 33, 605 (1972)

    Google Scholar 

  6. W S Duan, B R Wang and R J Wei, Phys. Lett. A 224, 154 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. T S Gill, A S Bairns, N S Saini and C Bedi, Phys. Lett. A 374, 3210 (2010)

    Article  ADS  MATH  Google Scholar 

  8. P Eslami, M Mottaghizadeh and H R Pakzad, Phys. Plasmas 18, 072305 (2011)

    Article  Google Scholar 

  9. N Jehan, M Sallahuddin and A S Mirza, Phys. Plasmas 17, 052308 (2010)

    Article  ADS  Google Scholar 

  10. M Khazei, J M Bulson and K E Lonngren, Phys. Fluids 25, 759 (1982)

    Article  ADS  Google Scholar 

  11. V S Chan and S R Seshadri, Phys. Fluids 18, 1294 (1975)

    Article  ADS  Google Scholar 

  12. S R Sharma, K C Swami and R S Tiwari, Phys. Lett. A 68, 54 (1978)

    Article  ADS  Google Scholar 

  13. I R Durrani, G Murtaza, H U Rahman and I A Azhar, Phys. Fluids 22, 791 (1979)

    Article  ADS  Google Scholar 

  14. X Jukui, D Wenshan and L He, Chin. Phys. 11, 1184 (2002)

    Article  ADS  Google Scholar 

  15. C S Gardner, J M Greener, M D Kruskal and R M Miura, Phys. Rev . Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  16. N J Zabusky and M D Kruskal, Phys. Rev . Lett. 15, 240 (1965)

    Article  ADS  MATH  Google Scholar 

  17. C H Su and R M Miura, J. Fluid Mech. 98, 509 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ju-Kue Xue, Phys. Rev . E 69, 016403 (2004); Europhys. Lett. 68, 645 (2004)

    Google Scholar 

  19. U N Ghosh, P Chatterjee and S K Kundu, Astrophys. Space Sci. 339, 255 (2012)

    Article  ADS  Google Scholar 

  20. S K Kundu, P Chatterjee and U N Ghosh, Astrophys. Space Sci. 340, 87 (2012)

    Article  ADS  Google Scholar 

  21. P Eslami, M Mottaghizadeh and H R Pakzad, Phys. Scr. 84, 015504 (2011)

    Article  ADS  Google Scholar 

  22. P Chatterjee, U N Ghosh, K Roy, S V Muniandy, C S Wong and B Sahu, Phys. Plasmas 17, 122314 (2010)

    Article  ADS  Google Scholar 

  23. Uday Narayan Ghosh, Prasanta Chatterjee and Mouloud Tribeche, Phys. Plasmas 19, 112302 (2012)

    Article  ADS  Google Scholar 

  24. Uday Narayan Ghosh and Prasanta Chatterjee, Astrophys. Space Sci. 344, 127 (2013)

    Article  ADS  Google Scholar 

  25. Uday Narayan Ghosh, Prasanta Chatterjee and Raj Kumar Roychoudhury, Phys. Plasmas 19, 012113 (2012)

    Article  ADS  Google Scholar 

  26. U N Ghosh and P Chatterjee, Indian J. Phys. 86, 407 (2012)

    Article  ADS  Google Scholar 

  27. S K El-Labany, E F El-Shamy and M G El-Mahgoab, Phys. Plasmas 19, 062105 (2012)

    Article  Google Scholar 

  28. N Hershkowitz and T Romesser, Phys. Rev . Lett. 32, 581 (1974)

    Article  ADS  Google Scholar 

  29. S Maxon and J Viecelli, Phys. Rev . Lett. 32, 4 (1974)

    Article  ADS  Google Scholar 

  30. B Sahu, Phys. Plasmas 17, 122106 (2010)

    Article  Google Scholar 

  31. B Sahu and R Roychoudhury, Phys. Plasmas. 11, 104871 (2004)

    ADS  Google Scholar 

  32. G Huang and M G Velarde, Phys. Rev . E 53, 2988 (1996)

    Article  ADS  Google Scholar 

  33. Sheng-Chang Li, Phys. Plasmas 17, 082307 (2010)

    Article  Google Scholar 

  34. M Temerin, K Cerny, W Lotko and F S Mozer, Phys. Rev . Lett. 48, 1175 (1982)

    Article  ADS  Google Scholar 

  35. R Bostrom et al, Phys. Rev . Lett. 61, 82 (1988)

    Article  ADS  Google Scholar 

  36. R Lundin et al, Nature (London) 341, 609 (1989)

    Article  ADS  Google Scholar 

  37. R Bostrom, IEEE Trans. Plasma Sci. 20, 756 (1992)

    Article  ADS  Google Scholar 

  38. P O Dovner et al, Geophys. Res. Lett. 21, 1827 (1994)

    Article  ADS  Google Scholar 

  39. H Matsumoto et al, Geophys. Res. Lett. 21, 2915 (1994)

    Article  ADS  Google Scholar 

  40. R A Carins et al, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  41. C R Choi, K W Min, M H Woo and C M Ryu, Phys. Plasmas 17, 092904 (2010)

    Article  Google Scholar 

  42. A Mannan and A A Mamun, Phys. Rev . E 84, 026408 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This scientific research is supported by SAP-DST Phase II. Reviewer’s comments and suggestions are gratefully acknowledged by the authors, without which this paper would not have been in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to UDAY NARAYAN GHOSH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GHOSH, U.N., CHATTERJEE, P. & GHOSH, D.K. Effect of nonthermal distributed electrons and temperature on phase shifts during the collision of inward and outward ion-acoustic solitary waves in nonplanar geometry. Pramana - J Phys 81, 631–640 (2013). https://doi.org/10.1007/s12043-013-0590-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0590-8

Keywords

PACS Nos

Navigation