Skip to main content
Log in

Solitary heat waves in nonlinear lattices with squared on-site potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the properties of heat transfer are examined theoretically. Numerical analysis shows that the propagation of heat is in the form of solitons. Furthermore, a systemized version of tanh method is carried out to extract solutions for the resulting nonlinear equations in the continuum case and the effect of inhomogeneity is studied for different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H Nakazawa, Prog. Theor. Phys. 39, 236 (1968)

    Article  ADS  Google Scholar 

  2. R J Rubin and W L Greer, J. Math. Phys. 12, 1686 (1971)

    Article  ADS  Google Scholar 

  3. U Zurcher and P Talkner, Phys. Rev. A 42, 3278 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. W M Visscher and M Rich, Phys. Rev. A 12, 675 (1975)

    Article  ADS  Google Scholar 

  5. F Bonetto, J L Lebowitz and J Lukkarinen, J. Stat. Phys. 116, 783 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D Roy, Phys. Rev. Lett. E 77, 062102 (2008)

    ADS  Google Scholar 

  7. T Mai and O Narayan, Phys. Rev. Lett. E 73, 061202 (2006)

    ADS  Google Scholar 

  8. S Lepri, R Livi and A Politi, Europhys. Lett. 43, 271 (1998)

    Article  ADS  Google Scholar 

  9. L Delfini, Phys. Rev. Lett. E 73, 060201 (2006)

    ADS  Google Scholar 

  10. A Dhar, Phys. Rev. Lett. 87, 069401 (2001)

    Article  ADS  Google Scholar 

  11. B Li, H Zhao and B Hu, Phys. Rev. Lett. 87, 069402 (2001)

    Article  ADS  Google Scholar 

  12. S John, H Sompolinsky and M J Stephen, Phys. Rev. Lett. B 27, 5592 (1983)

    ADS  Google Scholar 

  13. Lei Yang, Phys. Rev. Lett. 88, 094301 (2002)

    Article  ADS  Google Scholar 

  14. B Hu, Bai-Qi Jin, L Wang and H Yang, Phys. Rev. Lett. 90, 119401 (2003)

    Article  ADS  Google Scholar 

  15. L W Lee and A Dhar, Phys. Rev. Lett. 95, 094302 (2005)

    Article  ADS  Google Scholar 

  16. S Lepri, R Livi and A Politi, Phys. Rev. Lett. 78, 1896 (2003)

    Article  ADS  Google Scholar 

  17. H Zhao, L Yi, F Liu and B Xu, Eur. Phys. J. B 54, 185 (2006)

    Article  ADS  Google Scholar 

  18. D N Payton, M Rich and W M Visscher, Phys. Rev. Lett. 160, 706 (1967)

    ADS  Google Scholar 

  19. A Lippi and R Livi, J. Stat. Phys. 100, 1147 (2000)

    Article  MATH  Google Scholar 

  20. M Buttiker, Phys. Rev. Lett. B 33, 3020 (1986)

    ADS  Google Scholar 

  21. B Li, L Wang and G Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  22. B Li, L Wang and G Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  23. G Casati, C Mejia-Monasterio and T Prosen, Phys. Rev. Lett. 98, 104302 (2007)

    Article  ADS  Google Scholar 

  24. D Segal and A Nitzan, Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  25. M Terraneo, M Peyrard and G Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  26. M Toda, Phys. Scr. 20, 424 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  28. J S Wang, Phys. Rev. Lett. 99, 160601 (2007)

    Article  ADS  Google Scholar 

  29. G Stock, Phys. Rev. Lett. 102, 118301 (2009)

    Article  ADS  Google Scholar 

  30. L A Wu and D Segal, Phys. Rev. E 83, 051114 (2011)

    Article  ADS  Google Scholar 

  31. N Li, F Zhan, P Hanggi and B Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  32. J M Radcliffe, J. Phys. A: Gen. Phys. 4, 313 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  33. R J Glauber, Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  34. D Baldwin, Ü Göktaş and W Hereman, Comput. Phys. Commun. 162, 203 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgement

The work of M M Latha forms part of a major research project sponsored by University Grants Commission (UGC) (F. No. 38-265/2009(SR)), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROVINITA PERSEUS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

PERSEUS, R., LATHA, M.M. Solitary heat waves in nonlinear lattices with squared on-site potential. Pramana - J Phys 80, 1017–1030 (2013). https://doi.org/10.1007/s12043-013-0541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0541-4

Keywords

PACS Nos

Navigation