Skip to main content
Log in

The Kepler problem in the Snyder space

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper the Kepler problem in the non-commutative Snyder scenario was studied. The deformations were characterized in the Poisson bracket algebra under a mimic procedure from quantum standard formulations by taking into account a general recipe to build the non-commutative phase space coordinates (in the sense of Poisson brackets). An expression for the deformed potential was obtained, and then the consequences in the precession of the orbit of Mercury were calculated. The result could be used for finding an estimated value for the non-commutative deformation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MATH  Google Scholar 

  2. R M Mir-Kasimov, Phys. Lett. B 378, 181 (1996)

    Article  ADS  Google Scholar 

  3. A E F Djemai, On noncommutative classical mechanics, hep-th/0309034

  4. B Mirza and M Dehghani, Commun. Theor. Phys. 42, 183 (2004), hep-th/0211190

    MathSciNet  MATH  Google Scholar 

  5. J M Romero and J D Vergara, Mod. Phys. Lett. A 18, 1673 (2003), hep-th/0303064

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M V Battisti and S Meljanac, Phys. Rev. D 82, 024028 (2010), arXiv:1003.2108 (hep-th)

    Article  MathSciNet  ADS  Google Scholar 

  7. C Chatterjee and S Gangopadhyay, Europhys. Lett. 83, 21002 (2008), arXiv:0806.0758 (hep-th)

    Article  ADS  Google Scholar 

  8. R Banerjee, S Kulkarni and S Samanta, J. High Energy Phys. 0605, 077 (2006), hep-th/0602151

    Article  ADS  Google Scholar 

  9. R Banerjee, K Kumar and D Roychowdhury, J. High Energy Phys. 1103, 060 (2011), arXiv:1101.2021 (hep-th)

    Article  MathSciNet  ADS  Google Scholar 

  10. C Leiva, Pramana – J. Phys. 74, 169 (2010), arXiv:0809.0066 (math-ph)

    Article  ADS  Google Scholar 

  11. NASA Jet Propulsion Laboratory, http://ssd.jpl.nasa.gov/constants

  12. R A Matzner, Dictionary of geophysics, astrophysics, and astronomy (CRC Press, 2001) p. 356, ISBN 0849328918

  13. L Iorio, Astron. Astrophys. 433, 385 (2005), arXiv:gr-qc/0406041

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C L was supported by Universidad de Tarapacá Grant 4723-11. J R V was supported by Universidad de Tarapacá Grant 4720-11. J S was supported by COMISION NACIONAL DE CIENCIAS Y TECNOLOGIA through FONDECYT Grant 1110076, 1090613 and 1110230. This work was also partially supported by PUCV DI-123.713/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JOEL SAAVEDRA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEIVA, C., SAAVEDRA, J. & VILLANUEVA, J.R. The Kepler problem in the Snyder space. Pramana - J Phys 80, 945–951 (2013). https://doi.org/10.1007/s12043-013-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0540-5

Keywords

PACS Nos

Navigation