Skip to main content
Log in

Finding confined water in the hexagonal phase of Bi0.05Eu0.05Y0.90PO4·xH2O and its impact for identifying the location of luminescence quencher

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

1H MAS NMR spectra of Bi0.05Eu0.05Y0.90PO4·xH2O show chemical shift from −0.56 ppm at 300 K to −3.8 ppm at 215 K and another one at 5–6 ppm, which are related to the confined or interstitial water in the hexagonal structure and water molecules on the surface of the particles, respectively. Negative value of the chemical shift indicates that H of H2O is closer to metal ions (Y3 +  or Eu3 + ), which is a source of luminescence quencher. H coupling and decoupling 31P MAS NMR spectra at 300 and 250 K show the same chemical shift (−0.4 ppm) indicating that there is no direct bond between P and H. It is concluded that the confined water is not frozen even at 215 K because of the less number of H-bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure A1
Figure A2
Figure A3
Figure 2
Figure 3
Figure A4
Figure A5
Figure A6

Similar content being viewed by others

References

  1. M N Luwang, R S Ningthoujam, S K Srivastava, Jaganath and R K Vatsa, J. Am. Chem. Soc. 132, 2759 (2010)

    Article  Google Scholar 

  2. M N Luwang, R S Ningthoujam, S K Srivastava and R K Vatsa, J. Am. Chem. Soc. 133, 2998 (2011)

    Article  Google Scholar 

  3. K Koga, G T Gao, H Tanaka and X C Zeng, Nature 412, 802 (2001)

    Article  ADS  Google Scholar 

  4. G Hummer, J C Rasaiah and J P Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  5. S Ghosh, K V Ramanathan and A K Sood, Europhys. Lett. 65, 678 (2004)

    Article  ADS  Google Scholar 

  6. V V Chaban and O V Prezhdo, ACS Nano 5, 5647 (2011)

    Article  Google Scholar 

  7. S Ayyappan, N Suryaprakash, K V Ramanathan and C N R Rao, J. Porous Mater. 6, 5 (1999)

    Article  Google Scholar 

  8. J H Strange and M Rahman, Phys. Rev. Lett. 71, 3589 (1993)

    Article  ADS  Google Scholar 

  9. K Bhattacharyya, Acc. Chem. Res. 36, 95 (2003)

    Article  Google Scholar 

  10. A A Vartia and W H Thompson, J. Phys. Chem. B 116, 5414 (2012)

    Article  Google Scholar 

  11. S Roy and B Bagchi, J. Phys. Chem. B 116, 2958 (2012)

    Article  Google Scholar 

  12. J A McGuire and Y R Shen, Science 313, 1945 (2006)

    Article  ADS  Google Scholar 

  13. J J Gilijamse, A J Lock and H J Bakker, Proc. Natl. Acad. Sci. 102, 3202 (2005)

    Article  ADS  Google Scholar 

  14. M Smits, A Ghosh, M Sterrer, M Müller and M Bonn, Phys. Rev. Lett. 98, 098302 (2007)

    Article  ADS  Google Scholar 

  15. D E Moilanen, I R Piletic and M D Fayer, J. Phys. Chem. C 111, 8884 (2007)

    Article  Google Scholar 

  16. V V Volkov, D J Palmer and R Righini, J. Phys. Chem. B 111, 1377 (2007)

    Article  Google Scholar 

  17. R K Campen, T T M Ngo, M Sovago, J-M Ruysschaert and M Bonn, J. Am. Chem. Soc. 132, 8037 (2010)

    Article  Google Scholar 

  18. J A Mondal, S Nihonyanagi, S Yamaguchi and T Tahara, J. Am. Chem. Soc. 134, 7842 (2012)

    Article  Google Scholar 

  19. A C L Mooney, Acta Crystallogr. 3, 337 (1957)

    Article  Google Scholar 

  20. G Phaomei, W R Singh and R S Ningthoujam, J. Lumin. 131, 1164 (2011)

    Article  Google Scholar 

  21. S Banerjee, H Ghosh and A Datta, J. Phys. Chem. C 115, 19023 (2011)

    Article  Google Scholar 

  22. P Ghosh and A Patra, J. Phys. Chem. C 112, 3223 (2008)

    Article  Google Scholar 

  23. Y Matsumoto, U Unal, Y Kimura, S Ohashi and K Izawa, J. Phys. Chem. B 109, 12748 (2005)

    Article  Google Scholar 

  24. G L Turner, K A Smith, R J Kirrpatrick and E Oldfield, J. Magn. Resonance 70, 408 (1986)

    Google Scholar 

  25. M Bose, M Bhattacharya and S Ganguli, Phys. Rev. B 19, 72 (1979)

    Article  ADS  Google Scholar 

  26. A C Palke and J F Stebbins, American Mineralogist 96, 1343 (2011)

    Article  Google Scholar 

  27. V Ladizhansky, G Hodes and S Vega, J. Phys. Chem. B 104, 1939 (2000)

    Article  Google Scholar 

  28. R S Ningthoujam, V Sudarsan, R K Vatsa, R M Kadam, Jagannath and A Gupta, J. Alloys Compounds 486, 864 (2009)

    Article  Google Scholar 

  29. S Banerjee, S Maity and A Datta, J. Phys. Chem. C 115, 22804 (2011)

    Article  Google Scholar 

  30. S Banerjee and A Datta, Langmuir 26, 1172 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The author is grateful to Dr S Srivastava, Mr M Naik, Ms M Joshi and Mr D Jadhav, National Facility for High Field NMR, Mumbai, India for their extensive help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S NINGTHOUJAM.

Appendix: XRD, FTIR, TGA-DTA and PL characterization techniques

Appendix: XRD, FTIR, TGA-DTA and PL characterization techniques

The sample was characterized by the following methods: X-ray diffraction (XRD) patterns were recorded by Inel X-ray diffractometer EQUINOX 1000. Fourier transform infrared (FTIR) spectrum was recorded by FT-IR spectrometer (Bomem MB 102). Thermogravimetric and differential thermal data of sample prepared at 500°C were recorded by TGA-DTA instrument (SETARAM 92-16.18). Weight changes are due to the water content in the sample. Photoluminescence (PL) emission spectra were carried out by Hitachi F-4500 fluorescence spectrometer having a 150 W Xe lamp as the excitation source.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NINGTHOUJAM, R.S. Finding confined water in the hexagonal phase of Bi0.05Eu0.05Y0.90PO4·xH2O and its impact for identifying the location of luminescence quencher. Pramana - J Phys 80, 1055–1064 (2013). https://doi.org/10.1007/s12043-013-0537-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0537-0

Keywords

PACS Nos

Navigation