Skip to main content

Advertisement

Log in

Searching for universal behaviour in superheated droplet detector with effective recoil nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Energy calibration of superheated droplet detector is discussed in terms of the effective recoil nucleus threshold energy and the reduced superheat. This provides a universal energy calibration curve valid for different liquids used in this type of detector. Two widely used liquids, R114 and C4F10, one for neutron detection and the other for weakly interacting massive particles (WIMPs) dark matter search experiment, have been compared. Liquid having recoil nuclei with larger values of linear energy transfer (LET) provides better neutron-γ discrimination. Gamma (γ) response of C4F10 has also been studied and the results are discussed. Behaviour of nucleation parameter with the effective recoil nucleus threshold energy and the reduced superheat have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R E Apfel, US Patent 4143274 (1979)

  2. H Ing and H C Birnboim, Nucl. Tracks Radiat. Meas. 8, 285 (1984)

    Article  Google Scholar 

  3. PICASSO Collaboration: M Barnabe-Heider et al, Nucl. Instrum. Methods A 555, 184 (2005)

    Article  ADS  Google Scholar 

  4. T Morlat, M Felizardo, F Giuliani, T A Girard, G Waysand, R F Payne, H S Miley, A R Ramos, J G Marques, R C Martins and D Limagne, Astropart. Phys. 30, 159 (2008)

    Article  ADS  Google Scholar 

  5. W J Bolte, J I Collar, M Crisler, J Hall, D Holmgren, D Nakazawa, B Odom, K OSullivan, R Plunkett, E Ramberg, A Raskin, A Sonnenschein and J D Vieira, Nucl. Instrum. Methods A 577, 569 (2007)

    Article  ADS  Google Scholar 

  6. R E Apfel and S C Roy, Nucl. Instrum. Methods A 219, 582 (1984)

    Article  Google Scholar 

  7. R E Apfel and S C Roy, Rad. Prot. Dosim. 10, 327 (1985)

    Google Scholar 

  8. S C Roy, Rad. Phys. Chem. 61, 271 (2001)

    Article  ADS  Google Scholar 

  9. S C Roy and G A Sandison, Med. Phys. 27, 1800 (2000)

    Article  Google Scholar 

  10. F D’Errico, Nucl. Instrum. Methods B 184, 229 (2001)

    Article  ADS  Google Scholar 

  11. Mala Das, B K Chatterjee, B Roy and S C Roy, Rad. Phys. Chem. 66, 323 (2003)

    Article  ADS  Google Scholar 

  12. Mala Das, S Seth, S Saha, S Bhattacharya and P Bhattacharjee, Nucl. Instrum. Methods A 622, 196 (2010)

    Article  ADS  Google Scholar 

  13. PICASSO Collaboration: F Aubin et al, New J. Phys. 10, 103017 (2008)

    Article  Google Scholar 

  14. PICASSO Collaboration: S Archambault et al, Phys. Lett. B 682, 185 (2009)

    Article  ADS  Google Scholar 

  15. Mala Das and Teroku Sawamura, Nucl. Instrum. Methods A 531, 577 (2004)

    Article  ADS  Google Scholar 

  16. PICASSO Collaboration: S Archambault et al, New J. Phys. 13, 043006 (2011)

    Article  ADS  Google Scholar 

  17. B Roy, B K Chatterjee and S C Roy, Radiat. Meas. 29, 173 (1998)

    Article  Google Scholar 

  18. Mala Das, A S Arya, C Marick, D Kanjilal and S Saha, Rev. Sci. Instrum. 79(11), 113301 (2008)

    Article  ADS  Google Scholar 

  19. J F Ziegler, M D Ziegler and J P Biersack, Stopping and Range of Ions in Matter 2008 (SRIM.com)

  20. J W Gibbs, Ransl. Conn. Acad. III, 108 (1875)

    Google Scholar 

  21. PICASSO University of Montreal group (2010), personal communications

  22. R E Apfel, Y C Lo and S C Roy, Phys. Rev. A 31, 3194 (1985)

    Article  ADS  Google Scholar 

  23. S C Roy, R E Apfel and Y C Lo, Nucl. Instrum. Methods A 255, 199 (1987)

    Article  ADS  Google Scholar 

  24. Mala Das, B K Chatterjee, B Roy and S C Roy, Phys. Rev. E 62, 5843 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Prof. Viktor Zacek, University of Montreal, Canada and Prof. Pijushpani Bhattacharjee, Saha Institute of Nuclear Physics, Kolkata, India for encouragement and useful discussions. Authors are grateful to Prof. B K Chatterjee, Department of Physics, Bose Institute, Kolkata, India, for providing 137Cs gamma source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MALA DAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DAS, M., SETH, S. Searching for universal behaviour in superheated droplet detector with effective recoil nuclei. Pramana - J Phys 80, 983–994 (2013). https://doi.org/10.1007/s12043-013-0536-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0536-1

Keywords

PACS Nos

Navigation