Skip to main content
Log in

Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M Horanyi and D A Mendis, Astrophys. J. 294, 357 (1985)

    Article  ADS  Google Scholar 

  2. M Horanyi and D A Mendis, Astrophys. J. 307, 800 (1986)

    Article  ADS  Google Scholar 

  3. C K Goertz, Rev . Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  4. T G Northrop, Phys. Scr. 45, 475 (1992)

    Article  ADS  Google Scholar 

  5. D A Mendis and M Rosenberg, IEEE Trans. Plasma Sci. 20, 929 (1992)

    Article  ADS  Google Scholar 

  6. D A Mendis and M Rosenberg, Annu. Rev . Astron. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  7. F Verheest, Space Sci. Rev . 77, 267 (1996)

    Article  ADS  Google Scholar 

  8. B Feuerbacher et al, Astrophys. J. 181, 101 (1973)

    Article  ADS  Google Scholar 

  9. H Fechting et al, Planet. Space Sci. 27, 511 (1979)

    Article  ADS  Google Scholar 

  10. O Havnes et al, J. Geophys. Res. 92, 2281 (1987)

    Article  ADS  Google Scholar 

  11. M S Barnes et al, Phys. Rev . Lett. 68, 313 (1992)

    Article  ADS  Google Scholar 

  12. B Walch et al, Phys. Rev . Lett. 75, 838 (1995)

    Article  ADS  Google Scholar 

  13. P V Bliokh and Yarroshenko, Sov . Astron. (Engl. Transl.) 29, 330 (1985)

    ADS  Google Scholar 

  14. U de Angelis et al, J. Plasma Phys. 40, 399 (1988)

    Article  ADS  Google Scholar 

  15. U de Angelis et al, J. Plasma Phys. 42, 445 (1989)

    Article  ADS  Google Scholar 

  16. N D’Angelo, Planet. Space Sci. 38, 9 (1990)

    Google Scholar 

  17. R Bingham et al, Phys. Fluids B 3, 811 (1991)

    Article  ADS  Google Scholar 

  18. P K Shukla et al, Astrophys. Space Sci. 190, 23 (1992)

    Article  ADS  MATH  Google Scholar 

  19. U de Angelis et al, Phys. Plasmas 1, 236 (1994)

    Article  ADS  Google Scholar 

  20. P K Shukla et al, Phys. Plasmas 2, 3179 (1995)

    Article  ADS  Google Scholar 

  21. E C Whipple et al, J. Geophys. Res. 90, 7405 (1985)

    Article  ADS  Google Scholar 

  22. N N Rao et al, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  23. A Barkan et al, Phys. Plasmas 2, 3563 (1995)

    Article  ADS  Google Scholar 

  24. A A Mamun et al, Phys. Plasmas 3, 702 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  25. A A Mamun et al, Phys. Plasmas 3, 2610 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. H Schamel, Plasma Phys. 14, 905 (1972)

    Article  ADS  Google Scholar 

  27. H Schamel, Plasma Phys. 13, 139 (1975)

    Article  ADS  Google Scholar 

  28. D Winske et al, Geophys. Rev . Lett. 22, 2069 (1995)

    Article  ADS  Google Scholar 

  29. H Schamel, J. Plasma Phys. 9, 377 (1973)

    Article  ADS  Google Scholar 

  30. A A Mamun, J. Plasma Phys. 59, 575 (1998)

    Article  ADS  Google Scholar 

  31. H Washimi and T Taniuti, Phys. Rev . Lett. 17, 996 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research grant for research equipment from the Third World Academy of Sciences (TWAS), ICTP, Trieste, Italy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O RAHMAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAHMAN, O., MAMUN, A.A. Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons. Pramana - J Phys 80, 1031–1039 (2013). https://doi.org/10.1007/s12043-013-0535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0535-2

Keywords

PACS

Navigation