Skip to main content
Log in

New travelling wave solutions for nonlinear stochastic evolution equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the \(\left({G^{\prime}}/{G}\right)\)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A S V Ravi Kanth and K Aruna, Phys. Lett. A 372, 6896 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A S V Ravi Kanth and K Aruna, Comput. Phys. Commun. 180, 708 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Luwai Wazzan, Commun. Nonlinear. Sci. Numer. Simulat. 14, 443 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R Sakthivel, C Chun and J Lee, Z. Naturforsch. A (Journal of Physical Sciences) 65, 633 (2010)

    Google Scholar 

  5. C-Q Dai and J-F Zhang, Int. J. Nonlin. Sci. Numer. Simulat. 10, 675 (2009)

    Google Scholar 

  6. J H He and M A Abdou, Chaos, Solitons and Fractals 34, 1421 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J Lee and R Sakthivel, Pramana – J. Phys. 76, 819 (2011)

    Article  ADS  Google Scholar 

  8. J Lee and R Sakthivel, Comput. Appl. Math. 31, 1 (2012)

    Article  MathSciNet  Google Scholar 

  9. J H He, J. Comput. Appl. Math. 207, 3 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M Dehghan and J Manafian, Z. Naturforsch. A 64, 411 (2009)

    Google Scholar 

  11. J H He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)

    Article  ADS  MATH  Google Scholar 

  12. M Dehghan, M Shakourifar and A Hamidi, Chaos, Solitons and Fractals 39, 2509 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M L Wang, X Li and J Zhang, Phys. Lett. A 372, 417 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S Zhang, W Wang and J L Tong, Appl. Math. Comput. 209, 399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. A Bekir, Phys. Lett. A 372, 3400 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A Bekir and A C Cevikel, Chaos, Solitons and Fractals 41, 1733 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S Zhang, J L Tong and W Wang, Phys. Lett. A 372, 2254 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. G L Lamb, Elements of soliton theory (Wiley, New York, 1980) Vol. 5

    MATH  Google Scholar 

  19. M Wadati, J. Phys. Soc. Jpn. 52, 2642 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  20. M Wadati and Y Akutsu, J. Phys. Soc. Jpn. 53, 3342 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  21. R Herman, J. Phys. A: Math. Gen. 23 1063 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M Scalerandi, A Romano and C A Condat, Phys. Rev . E 58, 4166 (1998)

    Article  ADS  Google Scholar 

  23. C Dai and J Chen, Phys. Lett. A 373, 1218 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H Kim and R Sakthivel, Rep. Math. Phys. 67, 415 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Q Liu, Chaos, Solitons and Fractals 36, 1037 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Q Liu, Chaos, Solitons and Fractals 32, 1224 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Q Liu, Europhys. Lett. 74, 377 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. B Chen and Y Xie, Chaos, Solitons and Fractals 33, 864 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. B Chen and Y Xie, Chaos, Solitons and Fractals 31, 173 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. B Chen and Y Xie, J. Phys. A: Math. Gen. 38, 815 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. T-Y Wang, Y-H Ren and Y-L Zhao, Chaos, Solitons and Fractals 29, 920 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. H Holden, U B Oksendal and T Zhang, Stochastic partial differential equations: a modeling, white noise functional approach (Birhkauser, 1996)

  33. Y Xie, Phys. Lett. A 310, 161 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Y Xie, Phys. Lett. A 327, 174 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RATHINASAMY SAKTHIVEL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIM, H., SAKTHIVEL, R. New travelling wave solutions for nonlinear stochastic evolution equations. Pramana - J Phys 80, 917–931 (2013). https://doi.org/10.1007/s12043-013-0531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0531-6

Keywords

PACS

Navigation