Skip to main content
Log in

High harmonic generation in \(\textbf{H}_{{2}}^{{+}} \) and HD +  by intense femtosecond laser pulses: A wave packet approach with nonadiabatic interaction in HD + 

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have theoretically investigated the high harmonic generation (HHG) spectra of \(\textrm{H}_2^+ \) and HD +  using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (I 0) of 3.5 ×1014 and 4.5 ×1014 W/cm2, wavelengths (λL) of 800 and 1064 nm, and pulse durations (T) of 40 and 50 fs, for initial vibrational levels v 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD + ) radiative transitions can take place. For HD + , the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD +  obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD +  with the NA interaction and hyper-Raman lines in the spectra of both \(\textrm{H}_2^+ \) and HD +  for v 0 = 1 have been observed for higher value of I 0 or λL. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A L’ Huillier, L A Lompré, G Mainfray and C Manus, in Atoms in intense laser fields edited by M Gavrila (Academic, London, 1992) p. 139, and references cited therein

  2. J L Krause, K J Schafer and K C Kulander, Phys. Rev . Lett. 68, 3535 (1992); Phys. Rev . A 45, 4998 (1992)

  3. Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994) N Moiseyev and F Weinhold, Phys. Rev . Lett. 78, 2100 (1997) A Flettner, J König, M B Mason, T Pfeifer, U Weichmann, R Düren and G Gerber, Eur. Phys. J. D 21, 115 (2002) C B Madsen and L B Madsen, Phys. Rev . A 74, 023403 (2006) S Ramakrishna and T Seideman, Phys. Rev . Lett. 99, 113901 (2007) S Odžak and D B Milošević, Phys. Rev . A 79, 023414 (2009)

  4. Z Zhou and J Yuan, Phys. Rev . A 77, 063411 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. A D Bandrauk and N H Shon, Phys. Rev . A 66, 031401(R) (2002) and references cited therein

    Article  ADS  Google Scholar 

  6. T Zuo, S Chelkowski and A D Bandrauk, Phys. Rev . A 48, 3837 (1993)

    Article  ADS  Google Scholar 

  7. T Zuo, A D Bandrauk, M Ivanov and P B Corkum, Phys. Rev . A 51, 3991 (1995) P Moreno, L Plaja and L Roso, ibid. 55, R1593 (1997) M Lein, N Hay, R Velotta, J P Marangos and P L Knight, Phys. Rev . Lett. 88, 183903 (2002); Phys. Rev . A 66, 023805 (2002) M Lein, P P Corso, J P Marangos and P L Knight, ibid. 67, 023819 (2003) G L Kamta and A D Bandrauk, ibid. 70, 011404(R) (2004) M Lein, ibid. 72, 053816 (2005) Y Chen, J Chen and J Liu, ibid. 74, 063405 (2006)

  8. T Kreibich, M Lein, V Engel and E K U Gross, Phys. Rev . Lett. 87, 103901 (2001)

    Article  ADS  Google Scholar 

  9. N Moiseyev, M Chrysos, O Atabek and R Lefebvre, J. Phys. B 28, 2007 (1995)

    Article  ADS  Google Scholar 

  10. C Sarkar, S S Bhattacharyya and S Saha, J. Chem. Phys. 132, 234314 (2010)

    Article  ADS  Google Scholar 

  11. C Sarkar, S S Bhattacharyya and S Saha, J. Chem. Phys. 134, 024304 (2011)

    Article  Google Scholar 

  12. P B Corkum, Phys. Rev . Lett. 71, 1994 (1993) M Lewenstein, Ph Balcou, M Yu Ivanov, A L’ Huillier and P B Corkum, Phys. Rev . A 49, 2117 (1994)

  13. S Chelkowski, A Conjusteau, T Zuo and A D Bandrauk, Phys. Rev . A 54, 3235 (1996)

    Article  ADS  Google Scholar 

  14. B D Esry and I Ben-Itzak, Phys. Rev . A 82, 043409 (2010)

    Article  ADS  Google Scholar 

  15. L V Keldysh, Sov . Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  16. P Lambropoulos, Phys. Rev . Lett. 55, 2141 (1985)

    Article  ADS  Google Scholar 

  17. B Feuerstein and U Thumm, Phys. Rev . A 67, 043405 (2003)

    Article  ADS  Google Scholar 

  18. V Roudnev and B D Esry, Phys. Rev . A 76, 023403 (2007)

    Article  ADS  Google Scholar 

  19. M Yu Ivanov and P B Corkum, Phys. Rev . A 48, 580 (1993)

    Article  ADS  Google Scholar 

  20. A Carrington and R A Kennedy, Mol. Phys. 56, 935 (1985)

    Article  ADS  Google Scholar 

  21. R E Moss and I A Sadler, Mol. Phys. 61, 905 (1987)

    Article  ADS  Google Scholar 

  22. D A Long, The Raman effect (Wiley, New York, 2002) pp. 8–9

    Book  Google Scholar 

  23. E Charron, A Giusti-Suzor and F H Mies, J. Chem. Phys. 103, 7359 (1995)

    Article  ADS  Google Scholar 

  24. R Bhattacharya and S S Bhattacharyya, Phys. Rev . A 79, 043415 (2009)

    Article  ADS  Google Scholar 

  25. S Chelkowski and G N Gibson, Phys. Rev . A 52, R3417 (1995) R Numico, P Moreno, L Plaza and L Roso, J. Phys. B 31, 4163 (1998)

    Google Scholar 

  26. D R Bates, J. Chem. Phys. 19, 1122 (1951)

    Article  ADS  Google Scholar 

  27. S Ghosh, M K Chakrabarti, S S Bhattacharyya and S Saha, J. Phys. B 28, 1803 (1995)

    Article  ADS  Google Scholar 

  28. W Kolos and L Wolniewicz, J. Chem. Phys. 45, 944 (1966) M Trefler and H P Gush, Phys. Pev . Lett. 20, 703 (1968)

  29. P R Bunker, Chem. Phys. Lett. 27, 322 (1974) D M Bishop, J. Chem. Phys. 60, 2360 (1974)

    Google Scholar 

  30. J B Watson, A Sanpera and K Burnett, Phys. Rev . A 51, 1458 (1995)

    Article  ADS  Google Scholar 

  31. B Dutta and S S Bhattacharyya, Phys. Rev . A 82, 063403 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAMIR SAHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHARMIN, F., SAHA, S. & BHATTACHARYYA, S.S. High harmonic generation in \(\textbf{H}_{{2}}^{{+}} \) and HD +  by intense femtosecond laser pulses: A wave packet approach with nonadiabatic interaction in HD +  . Pramana - J Phys 80, 995–1010 (2013). https://doi.org/10.1007/s12043-013-0530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0530-7

Keywords

PACS

Navigation