, Volume 80, Issue 5, pp 837–846 | Cite as

Investigation of the zenith angle dependence of cosmic-ray muons at sea level



Angular distribution of cosmic-ray muons at sea level has been investigated using the Geant4 simulation package. The model used in the simulations was tested by comparing the simulation results with the measurements made using the Berkeley Lab cosmic ray detector. Primary particles’ energy and fluxes were obtained from the experimental measurements. Simulations were run at each zenith angle starting from θ = 0° up to θ = 70° with 5° increment. The angular distribution of muons at sea level has been estimated to be in the form I(θ) = I(0°) cos n (θ), where I(0°) is the muon intensity at 0° and n is a function of the muon momentum. The exponent n = 1.95±0.08 for muons with energies above 1 GeV is in good agreement, within error, with the values reported in the literature.


Cosmic muon angular dependence Geant4 


14.60.Ef 96.50.S− 13.85.Tp 



Special thanks are extended to Dr H Matis at Lawrence Berkeley National Laboratory for providing the PC board. The authors also would like thank Dr B T Tonguc and former graduate students for their help at various stages of the study. This work has been partially supported by the Sakarya University Scientific Research Project Committee Division under contract number 2007/02/02/003. The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).


  1. [1]
    T K Gaisser, Cosmic rays and particle physics (Cambridge University Press, Cambridge, 1990)Google Scholar
  2. [2]
    T K Gaisser and M Honda, Ann. Rev. Nucl. Part. Sci. 52, 153 (2002)ADSCrossRefGoogle Scholar
  3. [3]
    M P De Pascale et al, J. Geophys. Res. 98, 3501 (1993)ADSCrossRefGoogle Scholar
  4. [4]
    M Bahmanabadi et al, Astropart. Phys. 24, 183 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    S Tsuji et al, J. Phys. G: Nucl. Part. Phys. 24, 1805 (1998)ADSCrossRefGoogle Scholar
  6. [6]
    B Mitrica, M Petcu, A Saftoiu, I M Brancus, O Sima, H Rebel, A Haungs, G Toma and M Duma, Nucl. Phys. B 196, 462 (2009)CrossRefGoogle Scholar
  7. [7]
    H Arslan and M Bektasoglu, J. Phys. G: Nucl. Part. Phys. 39, 055201 (2012)ADSCrossRefGoogle Scholar
  8. [8]
    J W Lin, Y F Chen, R J Sheu and S H Jiang, Nucl. Instrum. Methods A 619, 24 (2010)ADSCrossRefGoogle Scholar
  9. [9]
    A N Dimitrieva et al, arXiv:hep-ex/0611051
  10. [10]
    P K F Grieder, Cosmic rays at Earth (Elsevier Science, Amsterdam, 2001)Google Scholar
  11. [11]
    J Kremer et al, Phys. Rev. Lett. 83, 4241 (1999)ADSCrossRefGoogle Scholar
  12. [12]
    R Bellotti et al, Phys. Rev. D 60, 052002 (1999)ADSCrossRefGoogle Scholar
  13. [13]
    M Ambrosio et al, Astropart. Phys. 10, 11 (1999)ADSCrossRefGoogle Scholar
  14. [14]
    Y Hayashi et al, Nucl. Instrum. Methods A 545, 643 (2005)ADSCrossRefGoogle Scholar
  15. [15]
    M B Amelchakov et al, Proc. 27th ICRC (Hamburg, 2001) Vol. 3, p. 1267Google Scholar
  16. [16]
    T Antoni et al, Nucl. Instrum. Methods A 513, 490 (2003)ADSCrossRefGoogle Scholar
  17. [17]
    Geant4 web site, available online at <> (2011)
  18. [18]
    S Agostinelli et al, Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    M Collier and L Wolfley, Assembly manual for the Berkeley lab cosmic ray detector (Lawrence Berkeley National Laboratory LBNL-51419, Berkeley, 2006)Google Scholar
  20. [20]
    M Bektasoglu and B T Tonguc, Arab. J. Sci. Eng. 37, 197 (2012)CrossRefGoogle Scholar
  21. [21]
    P Lipari, Astropart. Phys. 14, 171 (2000)ADSCrossRefGoogle Scholar
  22. [22]
    P Theodorsson, Measurement of weak radioactivity (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  23. [23]
    C D Anderson, Phys. Rev. 43, 381 (1933)ADSGoogle Scholar
  24. [24]
    T H Johnson and E C Stevenson, Phys. Rev. 43, 583584 (1933)Google Scholar
  25. [25]
    National Aeronautics and Space Administration, Earth Atmosphere Model, available online at <> (2011)
  26. [26]
    National Geophysical Data Center, Magnetic Field Calculator, available online at <> (2013)
  27. [27]
    M Bektasoglu and H Arslan, J. Atmos. Sol.-Terr. Phys. 74, 212 (2012)ADSCrossRefGoogle Scholar
  28. [28]
    S Haino et al, Phys. Lett. B 594, 35 (2004)ADSCrossRefGoogle Scholar
  29. [29]
    V K Mittal, R C Verma and S C Gupta, Introduction to nuclear and particle physics (Raj Press, New Delhi, 2009) pp. 352–353Google Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of PhysicsSakarya UniversitySakaryaTurkey

Personalised recommendations