Skip to main content
Log in

Quantum effects at low-energy atom–molecule interface

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of quantum interference in inter-conversion between cold atoms and diatomic molecules are analysed in this study. Within the framework of Fano’s theory, continuum-bound anisotropic dressed state formalism of atom–molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom–molecule transitions is discussed. Quantum effects at low-energy atom–molecule interface are important for exploring coherent phenomena in hitherto unexplored parameter regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. M H Anderson, J R Ensher, M R Matthews, C E Wieman and E A Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. C C Bradley, C A Sackett, J J Tollett and R G Hulet, Phys. Rev . Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. K B Davis, M-O Mewes, M R Andrews, N J van Druten, D S Durfee, D M Kurn and W Ketterle, Phys. Rev . Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. C Cohen-Tannoudji, Rev . Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  5. S Chu, Rev . Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  6. W D Phillips, Rev . Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  7. B DeMarco, J L Bohn, J P Burke Jr, M Holland and D S Jin, Phys. Rev . Lett. 82, 4208 (1999)

    Article  ADS  Google Scholar 

  8. E Tiesinga, B J Verhaar and H T C Stoof, Phys. Rev . A47, 4114 (1993)

    ADS  Google Scholar 

  9. T Khler, K Gral and P S Julienne, Rev . Mod. Phys. 78, 1311 (2006)

    Article  ADS  Google Scholar 

  10. For a recent review on Feshbach resonance, see C Chin, R Grimm, P Julienne and E Tiesinga, Rev . Mod. Phys. 82, 1225 (2010)

  11. O’Hara et al, Science 298, 2179 (2002)

    Article  ADS  Google Scholar 

  12. I Bloch, J Dalibard and W Zwerger, Rev . Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  13. S Giorgini, L P Pitaevskii and S Stringari, Rev . Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  14. M W Zwierlein, J R Abo-Shaeer, A Schirotzek, C H Schunck and W Ketterle, Nature 435, 1047 (2005)

    Article  ADS  Google Scholar 

  15. M Greiner, C A Regal and D S Jin, Nature 426, 537 (2003)

    Article  ADS  Google Scholar 

  16. S Jochim et al, Science 302, 2101 (2003)

    Article  ADS  Google Scholar 

  17. M W Zwierlein et al, Phys. Rev . Lett. 91, 250401 (2003)

    Article  ADS  Google Scholar 

  18. A Altmeyer et al, Phys. Rev . Lett. 98, 040401 (2007)

    Article  ADS  Google Scholar 

  19. C H Schunck et al, Phys. Rev . Lett. 98, 050404 (2007)

    Article  ADS  Google Scholar 

  20. P Nozieres and S Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  21. C A R Sa de Melo, M Randeria and J R Engelbrecht, Phys. Rev . Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  22. J G Bednorz and K A Müller, Z. Phys. B: Condens. Matter 64, 189 (1986)

    Article  ADS  Google Scholar 

  23. H R Thorsheim, J Weiner and P S Julienne, Phys. Rev . Lett. 58, 2420 (1987)

    Article  ADS  Google Scholar 

  24. J Weiner, V S Bagnato, S Zilio and P S Julienne, Rev . Mod. Phys. 71, 1 (1999)

    Article  ADS  Google Scholar 

  25. K M Jones, E Tiesinga, P D Lett and P S Julienne, Rev . Mod. Phys. 78, 483 (2006)

    Article  ADS  Google Scholar 

  26. P O Fedichev, Y Kagan, G V Shlyapnikov and J T M Walraven, Phys. Rev . Lett. 77, 2913 (1996)

    Article  ADS  Google Scholar 

  27. J L Bohn and P S Julienne, Phys. Rev . A56, 1486 (1997)

    Article  ADS  Google Scholar 

  28. F K Fatemi, K M Jones and P D Lett, Phys. Rev . Lett. 85, 4462 (2002)

    Article  ADS  Google Scholar 

  29. B Deb, Phys. Rev. A, in press

  30. For reviews on BEC in atomic gases, see Coherent atomic matter wav es, Les Houches, Session LXXII, edited by R Kaiser, C Westbrook and F David (Springer, New York, 2001) F Dalfovo, S Giorgini, L P Pitaevskii and S Stringari, Rev . Mod. Phys. 71, 463 (1999) A J Leggett, Rev . Mod. Phys. 73, 307 (2001) A L Fetter, LANL e-print archive cond-mat/9811366 (1998) W Ketterle, D S Durfee and D M Stamper-Kurn, LANL e-print archive cond-mat/9904034 (1999)

  31. H J Metcalf and P V Straten, Laser cooling and trapping (Springer-Verlag, New York, 1999)

  32. C J Pethik and H Smith, Bose–Einstein condensation in dilute gases (Cambridge University Press, Cambridge, 2002)

  33. V Letokhov, Laser control of atoms and molecules (Oxford University Press, Oxford, 2007)

  34. D S Jin and J Ye, Phys. Today 27, 138 (2011)

  35. L D Carr, D DeMille, R V Krems and J Ye, New J. Phys. 11, 1 (2009)

    Google Scholar 

  36. Cold molecules: Theory, experiment, applications edited by R Krems, W D Stwalley and B Friedrich (CRC Press, London, 2009)

  37. Ph Courteille, R S Freeland, D J Heinzen, F A van Abeelen and B J Verhaar, Phys. Rev . Lett. 81, 69 (1998)

    Article  ADS  Google Scholar 

  38. F A van Abeelen, D J Heinzen and B J Verhaar, Phys. Rev . A57, R4102 (1998)

    Article  Google Scholar 

  39. V Vuletic, C Chin, A J Kerman and S Chu, Phys. Rev . Lett. 83, 943 (1999)

    Article  ADS  Google Scholar 

  40. C Chin, A J Kerman, V Vuletic and S Chu, Phys. Rev . Lett. 90, 033201 (2003)

    Article  ADS  Google Scholar 

  41. C Chin et al, Phys. Rev . A70, 032701 (2004)

    Article  ADS  Google Scholar 

  42. M Junker, D Dries, C Welford, J Hitchcock, Y P Chen and R G Hulet, Phys. Rev . Lett. 101, 060406 (2008)

    Article  ADS  Google Scholar 

  43. K Winkler, F Lang, G Thalhammer, R Straten and H Denschlag, Phys. Rev . Lett. 98, 043201 (2007)

    Article  ADS  Google Scholar 

  44. K K Ni, S Ospelkaus, M H G de Miranda, A Peer, B Neyenheis, J J Zirbel, S Kotochigova, P S Julienne, D S Jin and J Ye, Science 322, 231 (2008)

    Article  ADS  Google Scholar 

  45. D M Bauer, M Lettner, C Vo, G Rempe and S Drr, Nature Phys. 5, 339 (2009)

    Article  ADS  Google Scholar 

  46. D M Bauer, M Lettner, C Vo, G Rempe and S Drr, Phys. Rev . A79, 062713 (2009)

    Article  ADS  Google Scholar 

  47. M Mackie, F Matthew, D Savage and J Kesselman, Phys. Rev . Lett. 101, 040401 (2008)

    Article  ADS  Google Scholar 

  48. P Pellegrini and R Côté, New J. Phys. 11, 055047 (2008)

    Article  Google Scholar 

  49. P Pellegrini, M Gacesa and R Côté, Phys. Rev . Lett. 101, 053201 (2008)

    Article  ADS  Google Scholar 

  50. E Kuznetsova, M Gacesa, P Pellegrini, F Y Susanne and R Côté, New J. Phys. 11, 055028 (2009)

    Article  Google Scholar 

  51. B Deb and A Rakshit, J. Phys. B: At. Mol. Opt. Phys. 42, 195202 (2009)

    Article  ADS  Google Scholar 

  52. B Deb and G S Agarwal, J. Phys. B: At. Mol. Opt. Phys. 42, 215203 (2009)

    Article  ADS  Google Scholar 

  53. B Deb, J. Phys. B: At. Mol. Opt. Phys. 43, 085208 (2010)

    Article  Google Scholar 

  54. J L Bohn and P S Julienne, Phys. Rev . A54, R4637 (1996)

    Article  ADS  Google Scholar 

  55. J L Bohn and P S Julienne, Phys. Rev . A60, 414 (1999)

    Article  ADS  Google Scholar 

  56. B Deb and J Hazra, Phys. Rev . Lett. 103, 023201 (2009)

    Article  ADS  Google Scholar 

  57. J Hazra, Theoretical studies on photoassociation of ultracold atoms in the presence of strong laser fields, Ph.D. Thesis (unpublished)

  58. U Fano, Phys. Rev . 124 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  59. H Feshbach, Ann. Phys. 5, 357 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. G S Agarwal, S L Haan, K Burnett and J Cooper, Phys. Rev . Lett. 48, 1164 (1982)

    Article  ADS  Google Scholar 

  61. G S Agarwal, S L Haan and J Cooper, Phys. Rev . A29, 2552 (1984)

    Article  ADS  Google Scholar 

  62. G S Agarwal, Springer tracts in modern physics: Quantum optics (Springer-Verlag, Berlin, 1974) Z Ficek and S Swain, Quantum interference and coherence (Springer, New York, 2007)

  63. S Das, A Rakshit and B Deb, Phys. Rev . A85, 011401(R) (2012)

    Article  ADS  Google Scholar 

  64. S E Harris, Phys. Rev . Lett. 62, 1033 (1989) S E Harris, Phys. Today 50, 36 (1997)

    Google Scholar 

  65. L V Hau et al, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  66. Z Shi et al, Phys. Rev . Lett. 99, 240801 (2007)

    Article  ADS  Google Scholar 

  67. R Wynar et al, Science 287, 1016 (2000) K Winkler et al, Phys. Rev . Lett. 95, 063202 (2005)

  68. R Dumke et al, Phys. Rev . A72, 041801(R) (2005)

    Article  ADS  Google Scholar 

  69. S Moal et al, Phys. Rev . Lett. 96, 023203 (2006)

    Article  ADS  Google Scholar 

  70. K Rzazewski and J H Eberly, Phys. Rev . Lett. 47, 408 (1981)

    Article  ADS  Google Scholar 

  71. T Halfmann et al, Phys. Rev . A58, R46 (1998) M Kroner et al, Nature 451, 311 (2008) A E Miroshnichenko, S Flach and Y S Kivshar, Rev . Mod. Phys. 82, 2257 (2010)

  72. M Shapiro and P Brumer, Phys. Rep. 425, 195 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B DEB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DEB, B., RAKSHIT, A., HAZRA, J. et al. Quantum effects at low-energy atom–molecule interface. Pramana - J Phys 80, 3–19 (2013). https://doi.org/10.1007/s12043-012-0473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0473-4

Keywords

PACS Nos

Navigation