Pramana

, Volume 79, Issue 5, pp 1141–1167 | Cite as

Charged-lepton flavour physics

Article

Abstract

This write-up on a talk at the 2011 Lepton–Photon symposium in Mumbai, India, summarizes recent results in the charged-lepton flavour sector. Searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation are reviewed here. Recent progress in τ-lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment is also discussed.

Keywords

Charged lepton interactions leptons 

PACS Nos

13.60.−r 14.65.−z 13.15.+g 

References

  1. [1]
    S L Glashow, J Iliopoulos and L Maiani, Phys. Rev. D2, 1285 (1970)ADSGoogle Scholar
  2. [2]
    LHCb Collaboration, 1112.1600 (2011)Google Scholar
  3. [3]
    CMS Collaboration: Phys. Rev. Lett. 107, 191802 (2011)ADSCrossRefGoogle Scholar
  4. [4]
    W J Marciano, T Mori and J M Roney, Annu. Rev. Nucl. Part. Sci. 58, 315 (2008)ADSCrossRefGoogle Scholar
  5. [5]
    Heavy Flavor Averaging Group (2010), 1010.1589, http://www.slac.stanford.edu/xorg/hfag/tau/index.html
  6. [6]
    G Danby, J-M Gaillard, K Goulianos, L M Lederman, N Mistry, M Schwartz and J Steinberger, Phys. Rev. Lett. 9, 36 (1962)ADSCrossRefGoogle Scholar
  7. [7]
    G Feinberg, Phys. Rev. 110, 1482 (1958)ADSCrossRefGoogle Scholar
  8. [8]
    MEGA Collaboration: M Ahmed et al, Phys. Rev. D65, 112002 (2002), hep-ex/0111030ADSGoogle Scholar
  9. [9]
    Y Kuno and Y Okada, Rev. Mod. Phys. 73, 151 (2001), hep-ph/9909265ADSCrossRefGoogle Scholar
  10. [10]
    M Raidal et al, Eur. Phys. J. C57, 13 (2008), 0801.1826ADSCrossRefGoogle Scholar
  11. [11]
    R Barbier et al, Phys. Rep. 420, 1 (2005), hep-ph/0406039ADSCrossRefGoogle Scholar
  12. [12]
    A Baldini, T Mori et al, The MEG experiment: Search for the μ decay at PSI, http://meg.psi.ch/docs
  13. [13]
    MEG Collaboration: J Adam et al, Nucl. Phys. B834, 1 (2010), 0908.2594ADSCrossRefGoogle Scholar
  14. [14]
    MEG Collaboration: R Sawada, PoS ICHEP2010, 263 (2010)Google Scholar
  15. [15]
    MEG Collaboration, Phys. Rev. Lett. 107, 171801 (2011), 1107.5547CrossRefGoogle Scholar
  16. [16]
    L Calibbi, A Faccia, A Masiero and S K Vempati, Phys. Rev. D74, 116002 (2006), hep-ph/0605139ADSGoogle Scholar
  17. [17]
    A Masiero, S K Vempati and O Vives, Nucl. Phys. B649, 189 (2003), hep-ph/0209303ADSCrossRefGoogle Scholar
  18. [18]
    R Kitano, M Koike, S Komine and Y Okada, Phys. Lett. B575, 300 (2003), hep-ph/0308021ADSGoogle Scholar
  19. [19]
    V Cirigliano, R Kitano, Y Okada and P Tuzon, Phys. Rev. D80, 013002 (2009), 0904.0957ADSGoogle Scholar
  20. [20]
    A Czarnecki, W J Marciano and K Melnikov, AIP Conf. Proc. 435, 409 (1998), hep-ph/9801218ADSGoogle Scholar
  21. [21]
    R Kitano, M Koike and Y Okada, Phys. Rev. D66, 096002 (2002), hep-ph/0203110ADSGoogle Scholar
  22. [22]
    SINDRUM II Collaboration: W H Bertl et al, Eur. Phys. J. C47, 337 (2006)ADSCrossRefGoogle Scholar
  23. [23]
    See, e.g., R Bernstein, Pittsburgh Seminar, Feb 2011, http://mu2e.fnal.gov
  24. [24]
    COMET Collaboration, KEK Report 2009-10 (TDR)Google Scholar
  25. [25]
    Project-X, FNAL, http://projectx.fnal.gov/
  26. [26]
    J Pasternak et al, Proc. Int. Particle Accel. Conf. IPAC10 (Kyoto, Japan, 2010) A Sato et al, Proc. EPAC2006 (Edinburgh, 2006) p. 2508Google Scholar
  27. [27]
    BABAR Collaboration, Phys. Rev. Lett. 104, 021802 (2010), 0908.2381ADSCrossRefGoogle Scholar
  28. [28]
    Y Miyazaki et al, Phys. Lett. B699, 251 (2011), 1101.0755ADSGoogle Scholar
  29. [29]
    SuperB Collaboration, 0709.0451 (2007)Google Scholar
  30. [30]
    Belle II Collaboration (2010), Long author list - awaiting processing, 1011.0352Google Scholar
  31. [31]
    K Hayasaka, J. Phys.: Conf. Series 171, 1, 012079 (2009)CrossRefGoogle Scholar
  32. [32]
    T2K Collaboration, Phys. Rev. Lett. 107, 041801 (2011), 1106.2822CrossRefGoogle Scholar
  33. [33]
    J Hisano, M Nagai, P Paradisi and Y Shimizu, J. High Energy Phys. 0912, 030 (2009), 0904.2080ADSCrossRefGoogle Scholar
  34. [34]
    S K Lamoreaux and R Golub, J. Phys. G36, 104002 (2009)ADSGoogle Scholar
  35. [35]
    M Pospelov and A Ritz, Ann. Phys. 318, 119 (2005), hep-ph/0504231ADSMATHCrossRefGoogle Scholar
  36. [36]
    K Kirch, Talk at PANIC 2011 (MIT-Cambridge, USA)Google Scholar
  37. [37]
    G Zsigmond, Talk at EPS-HEP 2011 (Grenoble, France)Google Scholar
  38. [38]
    C A Baker et al, Phys. Rev. Lett. 97, 131801 (2006), hep-ex/0602020ADSCrossRefGoogle Scholar
  39. [39]
    Storage Ring EDM Collaboration, http://www.bnl.gov/edm/
  40. [40]
    Y Semertzidis, Talk at Patras-Axion Workshop 2011 (Mykonos, Greece)Google Scholar
  41. [41]
    B C Regan, E D Commins, C J Schmidt and D DeMille, Phys. Rev. Lett. 88, 071805 (2002)ADSCrossRefGoogle Scholar
  42. [42]
    J J Hudson et al, Nature 473, 493 (2011)ADSCrossRefGoogle Scholar
  43. [43]
    L I Schiff, Phys. Rev. 132, 2194 (1963)MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J J Hudson, B E Sauer, M R Tarbutt and E A Hinds, Phys. Rev. Lett. 89, 023003 (2002), hep-ex/0202014ADSCrossRefGoogle Scholar
  45. [45]
    ALEPH Collaboration, Phys. Rep. 421, 191 (2005), hep-ex/0506072ADSCrossRefGoogle Scholar
  46. [46]
    Particle Data Group: K Nakamura et al, J. Phys. G37, 075021 (2010)ADSGoogle Scholar
  47. [47]
    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak and Heavy Flavour Group, Phys. Rep. 427, 257 (2006), hep-ex/0509008ADSGoogle Scholar
  48. [48]
    S Weinberg, Phys. Rev. 112, 1375 (1958)ADSMATHCrossRefGoogle Scholar
  49. [49]
    A Pich, Phys. Lett. B196, 561 (1987)ADSGoogle Scholar
  50. [50]
    S Nussinov and A Soffer, Phys. Rev. D78, 033006 (2008), 0806.3922ADSGoogle Scholar
  51. [51]
    BABAR Collaboration, Phys. Rev. D83, 032002 (2011), 1011.3917Google Scholar
  52. [52]
    I I Bigi and A I Sanda, Phys. Lett. B625, 47 (2005), hep-ph/0506037ADSGoogle Scholar
  53. [53]
    Y Grossman and Y Nir, 1110.3790 (2011)Google Scholar
  54. [54]
    J H Kuhn and E Mirkes, Phys. Lett. B398, 407 (1997), hep-ph/9609502ADSGoogle Scholar
  55. [55]
    BABAR Collaboration, Phys. Rev. D83, 071103 (2011), 1011.5477Google Scholar
  56. [56]
    Belle Collaboration, Phys. Rev. Lett. 107, 131801 (2011), 1101.0349ADSCrossRefGoogle Scholar
  57. [57]
    BABAR Collaboration, 1109.1527 (2011)Google Scholar
  58. [58]
    M Davier, A Hoecker and A Zhang, Rev. Mod. Phys. 78, 1043 (2006), hep-ph/0507078ADSCrossRefGoogle Scholar
  59. [59]
    ALEPH Collaboration, Z. Phys. C76, 15 (1997)Google Scholar
  60. [60]
    ALEPH Collaboration, Eur. Phys. J. C4, 409 (1998)ADSCrossRefGoogle Scholar
  61. [61]
    OPAL Collaboration, Eur. Phys. J. C7, 571 (1999), hep-ex/9808019ADSCrossRefGoogle Scholar
  62. [62]
    D Boito et al, 1112.4202 (2011)Google Scholar
  63. [63]
    P A Baikov, K G Chetyrkin and J H Kuhn, Phys. Rev. Lett. 101, 012002 (2008), 0801.1821ADSCrossRefGoogle Scholar
  64. [64]
    M Davier, S Descotes-Genon, A Hoecker, B Malaescu and Z Zhang, Eur. Phys. J. C56, 305 (2008), 0803.0979ADSCrossRefGoogle Scholar
  65. [65]
    M Beneke and M Jamin, J. High Energy Phys. 0809, 044 (2008), 0806.3156ADSCrossRefGoogle Scholar
  66. [66]
    A Menke, 0904.1796 (2009)Google Scholar
  67. [67]
    I Caprini and J Fischer, Phys. Rev. D84, 054019 (2011), 1106.5336ADSGoogle Scholar
  68. [68]
    T van Ritbergen, J A M Vermaseren and S A Larin, Phys. Lett. B400, 379 (1997), hep-ph/9701390ADSGoogle Scholar
  69. [69]
    K G Chetyrkin, Bernd A Kniehl and M Steinhauser, Phys. Rev. Lett. 79, 2184 (1997), hep-ph/9706430ADSCrossRefGoogle Scholar
  70. [70]
    K G Chetyrkin, B A Kniehl and M Steinhauser, Nucl. Phys. B510, 61 (1998), hep-ph/9708255ADSGoogle Scholar
  71. [71]
    G Rodrigo, A Pich and A Santamaria, Phys. Lett. B424, 367 (1998), hep-ph/9707474ADSGoogle Scholar
  72. [72]
    M Baak et al, 1107.0975 (2011)Google Scholar
  73. [73]
    S Bethke, Eur. Phys. J. C64, 689 (2009), 0908.1135ADSCrossRefGoogle Scholar
  74. [74]
    K G Chetyrkin and A Kwiatkowski, Z. Phys. C59, 525 (1993), hep-ph/9805232ADSGoogle Scholar
  75. [75]
    Kim Maltman, Phys. Rev. D58, 093015 (1998), hep-ph/9804298ADSGoogle Scholar
  76. [76]
    CKMfitter Group: V Niess, Talk at EPS 2011 (Grenoble, France), http://ckmfitter.in2p3.fr
  77. [77]
    This discussion follows in large parts the Review [130]Google Scholar
  78. [78]
    A Czarnecki and W J Marciano, Phys. Rev. D64, 013014 (2001), hep-ph/0102122ADSGoogle Scholar
  79. [79]
    M Davier and W J Marciano, Annu. Rev. Nucl. Part. Sci. 54, 115 (2004)ADSCrossRefGoogle Scholar
  80. [79a]
    In spite of the breathtaking accuracy of the most recent electron g − 2 measurement by the Harvard group [80], giving \(a^{\rm exp}_e=(11\,596\,521\,807.3 \pm 2.8) \cdot 10^{-13}\), exploiting this measurement to search for new physics is limited by the knowledge of the electromagnetic fine structure constant, α. Inserting independent measurements of α from atom recoil analyses [81–84], effectively reduces the above accuracy by a factor of 20Google Scholar
  81. [80]
    D Hanneke, S Fogwell and G Gabrielse, Phys. Rev. Lett. 100, 120801 (2008), 0801.1134ADSCrossRefGoogle Scholar
  82. [81]
    P Cladé et al, Phys. Rev. Lett. 96, 033001 (2006)ADSCrossRefGoogle Scholar
  83. [82]
    Malo Cadoret et al, Phys. Rev. Lett. 101, 230801 (2008), 0810.3152ADSCrossRefGoogle Scholar
  84. [83]
    P Cladé et al, Phys. Rev. A74, 052109 (2006)ADSGoogle Scholar
  85. [84]
    V Gerginov et al, Phys. Rev. A73, 032504 (2006)ADSGoogle Scholar
  86. [85]
    J P Miller, E de Rafael and B L Roberts, Rep. Prog. Phys. 70, 795 (2007), hep-ph/0703049ADSCrossRefGoogle Scholar
  87. [86]
    F Jegerlehner and A Nyffeler, Phys. Rep. 477, 1 (2009), 0902.3360ADSCrossRefGoogle Scholar
  88. [87]
    Muon g-2: GWBennett et al, Phys. Rev. Lett. 89, 101804 (2002), Erratum, ibid. 89, 129903 (2002), hep-ex/0208001Google Scholar
  89. [88]
    Muon g-2: G W Bennett et al, Phys. Rev. Lett. 92, 161802 (2004), hep-ex/0401008ADSCrossRefGoogle Scholar
  90. [89]
    Muon G-2: G W Bennett et al, Phys. Rev. D73, 072003 (2006), hep-ex/0602035ADSGoogle Scholar
  91. [90]
    CERN-Mainz-Daresbury: J Bailey et al, Nucl. Phys. B150, 1 (1979)ADSCrossRefGoogle Scholar
  92. [91]
    Julian S Schwinger, Phys. Rev. 73, 416 (1948)MATHCrossRefGoogle Scholar
  93. [92]
    T Kinoshita and M Nio, Phys. Rev. D73, 013003 (2006), hep-ph/0507249ADSGoogle Scholar
  94. [93]
    T Aoyama, M Hayakawa, T Kinoshita and M Nio, Phys. Rev. Lett. 99, 110406 (2007), 0706.3496ADSCrossRefGoogle Scholar
  95. [94]
    T Kinoshita and M Nio, Phys. Rev. D70, 113001 (2004), hep-ph/0402206ADSGoogle Scholar
  96. [95]
    T Kinoshita and M Nio, Phys. Rev. D73, 053007 (2006), hep-ph/0512330ADSGoogle Scholar
  97. [96]
    A L Kataev, hep-ph/0602098 (2006)Google Scholar
  98. [97]
    M Passera, J. Phys. G31, R75 (2005), hep-ph/0411168ADSGoogle Scholar
  99. [98]
    G Gabrielse, D Hanneke, T Kinoshita, M Nio and B C Odom, Phys. Rev. Lett. 97, 030802 (2006), Erratum, ibid. 99, 039902 (2007)Google Scholar
  100. [99]
    R Jackiw and S Weinberg, Phys. Rev. D5, 2396 (1972)ADSGoogle Scholar
  101. [100]
    A Czarnecki, W J Marciano and A Vainshtein, Phys. Rev. D67, 073006 (2003), Erratum, ibid. D73, 119901 (2006), hep-ph/0212229Google Scholar
  102. [101]
    S Heinemeyer, D Stockinger and G Weiglein, Nucl. Phys. B699, 103 (2004), hep-ph/0405255ADSCrossRefGoogle Scholar
  103. [102]
    T Gribouk and A Czarnecki, Phys. Rev. D72, 053016 (2005), hep-ph/0509205ADSGoogle Scholar
  104. [103]
    A Czarnecki, B Krause and W J Marciano, Phys. Rev. Lett. 76, 3267 (1996), hep-ph/9512369ADSCrossRefGoogle Scholar
  105. [104]
    A Czarnecki, B Krause and W J Marciano, Phys. Rev. D52, 2619 (1995), hep-ph/9506256ADSGoogle Scholar
  106. [105]
    S Peris, M Perrottet and E de Rafael, Phys. Lett. B355, 523 (1995), hep-ph/9505405ADSGoogle Scholar
  107. [106]
    T V Kukhto, E A Kuraev, Z K Silagadze and A Schiller, Nucl. Phys. B371, 567 (1992)ADSCrossRefGoogle Scholar
  108. [107]
    G Degrassi and G F Giudice, Phys. Rev. D58, 053007 (1998), hep-ph/9803384ADSGoogle Scholar
  109. [108]
    Xu Feng, Karl Jansen, Marcus Petschlies and Dru B Renner, 1103.4818 (2011)Google Scholar
  110. [109]
    C Bouchiat and L Michel, Phys. Rev. 106, 170 (1957)ADSCrossRefGoogle Scholar
  111. [110]
    M Gourdin and E De Rafael, Nucl. Phys. B10, 667 (1969)ADSCrossRefGoogle Scholar
  112. [111]
    S J Brodsky and E De Rafael, Phys. Rev. 168, 1620 (1968)ADSCrossRefGoogle Scholar
  113. [112]
    A B Arbuzov, E A Kuraev, N P Merenkov and L Trentadue, J. High Energy Phys. 9812, 009 (1998), hep-ph/9804430ADSCrossRefGoogle Scholar
  114. [113]
    S Binner, J H Kuhn and K Melnikov, Phys. Lett. B459, 279 (1999), hep-ph/9902399ADSGoogle Scholar
  115. [114]
    BABAR Collaboration, Phys. Rev. Lett. 103, 231801 (2009), 0908.3589CrossRefGoogle Scholar
  116. [115]
    M Davier, A Hoecker, B Malaescu and Z Zhang, Eur. Phys. J. C71, 1515 (2011), 1010.4180ADSGoogle Scholar
  117. [116]
    KLOE Collaboration, Phys. Lett. B700, 102 (2011), 1006.5313ADSGoogle Scholar
  118. [117]
    KLOE Collaboration, Phys. Lett. B670, 285 (2009), 0809.3950ADSGoogle Scholar
  119. [118]
    KLOE Collaboration: G Venanzoni, Talk at EPS-HEP 2011 (Grenoble, France)Google Scholar
  120. [119]
    BABAR Collaboration: V P Druzhinin, Talk at the 23rd International Symposium on Lepton–Photon Interactions at High Energy (LP07) (Daegu, Korea, 13–18 Aug 2007) published in Daegu 2007, Lepton and photon interactions at high energies 134, arXiv:0710.3455
  121. [120]
    BABAR Collaboration, Phys. Rev. D71, 052001 (2005), hep-ex/0502025Google Scholar
  122. [121]
    R Alemany, M Davier and A Hoecker, Eur. Phys. J. C2, 123 (1998), hep-ph/9703220ADSGoogle Scholar
  123. [122]
    M Davier et al, Eur. Phys. J. C66, 127 (2010), 0906.5443ADSCrossRefGoogle Scholar
  124. [123]
    K Hagiwara, R Liao, A D Martin, D Nomura and T Teubner, J. Phys. G38, 085003 (2011), 1105.3149ADSGoogle Scholar
  125. [124]
    B Krause, Phys. Lett. B390, 392 (1997), hep-ph/9607259ADSGoogle Scholar
  126. [125]
    Some recent representative estimates of the hadronic light-by-light scattering contribution, a μ had,NLO[LBL], that followed after the sign correction of [135,136], are: (105 ± 26) · 10−11 [127], (110 ± 40) · 10−11 [126], (136 ± 25) · 10−11 [128]Google Scholar
  127. [126]
    J Bijnens and J Prades, Mod. Phys. Lett. A22, 767 (2007), hep-ph/0702170ADSGoogle Scholar
  128. [127]
    J Prades, E de Rafael and A Vainshtein, 0901.0306 (2009)Google Scholar
  129. [128]
    K Melnikov and A Vainshtein, Phys. Rev. D70, 113006 (2004), hep-ph/0312226ADSGoogle Scholar
  130. [129]
    E de Rafael, Phys. Lett. B322, 239 (1994), hep-ph/9311316ADSGoogle Scholar
  131. [130]
    A Hoecker and W Marciano, The muon anomalous magnetic moment, in: Particle Data Group (K Nakamura et al), J. Phys. G37, 075021 (2010)Google Scholar
  132. [131]
    M Pospelov, Phys. Rev. D80, 095002 (2009), 0811.1030ADSGoogle Scholar
  133. [132]
    D Tucker-Smith and I Yavin, Phys. Rev. D83, 101702 (2011), 1011.4922ADSGoogle Scholar
  134. [133]
  135. [134]
    V Vrba et al, Report KEK_J-PARC-PAC2009-06 See also, e.g., Naohito SAITO (KEK), Seminar at DESY 2011Google Scholar
  136. [135]
    M Knecht and A Nyffeler, Phys. Rev. D65, 073034 (2002), hep-ph/0111058ADSGoogle Scholar
  137. [136]
    M Knecht, A Nyffeler, M Perrottet and E de Rafael, Phys. Rev. Lett. 88, 071802 (2002), hep-ph/0111059ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.CERNMeyrin, GenevaSwitzerland

Personalised recommendations