Skip to main content
Log in

Low-energy neutrino measurements

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors which can detect neutrinos emitted by the Earth crust and mantle. First measurements of geoneutrinos have occurred which can bring fundamental contribution in understanding the geophysics of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. L Wolfenstein, Phys. Rev. D17, 2369 (1978) S P Mikheev and A Yu Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

  2. Particle Data Group: K Nakamura et al, J. Phys. G37, 075021 (2010)

    ADS  Google Scholar 

  3. T Schwetz, These proceedings

  4. A M Serenelli, W C Haxton and C Pena-Garay, Astrophys. J. 743, 24 (2011)

    Article  ADS  Google Scholar 

  5. A Friedland et al, Phys. Lett. B597, 347 (2004)

    ADS  Google Scholar 

  6. These experiments had no spectroscopical capabilities. Instead, their signal was composed of undistinguished interactions of all neutrinos above their detection threshold of 233 keV. Accurately subtracting the 7Be and other species leaves the pp flux emerge

  7. N Grevesse and J Sauval, Sp. Sc. Rev. 85, 161 (1998)

    Article  ADS  Google Scholar 

  8. M Asplund, N Grevesse, J Sauval and P Scott, Ann. Rev. Astr. Astrophys. 47, 481 (2009)

    Article  ADS  Google Scholar 

  9. A Serenelli, S Basu, J W Ferguson and M Asplund, Astrophys. J. 705, L123 (2009)

    Article  ADS  Google Scholar 

  10. Borexino Collaboration: G Alimonti et al, Nucl. Instrum. Methods A600, 568 (2009)

    ADS  Google Scholar 

  11. Super-Kamiokande Collaboration: Y Fukuda et al, Nucl. Instrum. Methods A501, 418 (2003)

    ADS  Google Scholar 

  12. SNO Collaboration: J Boger et al, Nucl. Instrum. Methods A449, 172 (2000)

    ADS  Google Scholar 

  13. KamLAND Collaboration: S Abe et al, Phys. Rev. C81, 025807 (2010)

    ADS  Google Scholar 

  14. Borexino Collaboration: G Bellini et al, J. Instrum. 6, P05005 (2011)

    Article  Google Scholar 

  15. Borexino Collaboration: C Arpesella et al, Phys. Rev. Lett. 101, 091302 (2008)

    Article  ADS  Google Scholar 

  16. Borexino Collaboration: G Bellini et al, Phys. Rev. Lett. 107, 141302 (2011)

    Article  ADS  Google Scholar 

  17. Borexino Collaboration: B Caccianiga, Proc. of 12th TAUP Conference (Munich, 2011)

  18. Borexino Collaboration: G Bellini et al, Phys. Lett. B707, 22 (2012), arXiv:1104.2150

    ADS  Google Scholar 

  19. P C de Holanda, J. Cosmol. Astropart. Phys. 0907, 024 (2009)

    Article  Google Scholar 

  20. Borexino Collaboration: G Bellini et al, Phys. Rev. D82, 033006 (2010)

    ADS  Google Scholar 

  21. Super-Kamiokande Collaboration: J Hosaka et al, Phys. Rev. D73, 112001 (2006)

    ADS  Google Scholar 

  22. Super-Kamiokande Collaboration: K Abe et al, Phys. Rev. D83, 052010 (2011)

    ADS  Google Scholar 

  23. S Yamada for the Super-Kamiokande Collaboration, talk at Physun (2010), http://physun2010.mi.infn.it/PHYSUN_yamada.pdf

  24. SNO Collaboration: B Aharmin et al, Phys. Rev. C (2011) (submitted), arXiv:1107.2901

  25. SNO Collaboration: B Aharmin et al, Phys. Rev. C75, 045502 (2007)

    ADS  Google Scholar 

  26. SNO Collaboration: B Aharmin et al, Phys. Rev. C72, 055502 (2005)

    ADS  Google Scholar 

  27. SNO Collaboration: B Aharmin et al, Phys. Rev. C81, 055504 (2010)

    ADS  Google Scholar 

  28. KamLAND Collaboration: S Abe et al, Phys. Rev. D83, 052002 (2011)

    ADS  Google Scholar 

  29. KamLAND Collaboration: T Araki et al, Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  Google Scholar 

  30. KamLAND Collaboration: S Abe et al, Phys. Rev. C84, 035804 (2011)

    ADS  Google Scholar 

  31. K Zuber, These proceedings

  32. S Biller, talk at XIV Neutrino Telescopes (Venice, Italy, 2011)

  33. LENA Collaboration: M Wurm et al, Astropart. Phys. 35, 685 (2012), arXiv:1104.5620

    Article  ADS  Google Scholar 

  34. G Fiorentini, M Lissia and F Mantovani, Phys. Rep. 453, 117 (2007)

    Article  ADS  Google Scholar 

  35. I Shimizu for the KamLAND Collaboration, talk at Neutrino Geosience (2010), http://geoscience.lngs.infn.it/Program/Pdf_presentations/Shimizu.pdf

  36. Borexino Collaboration: G Bellini et al, Phys. Lett. B687, 299 (2010)

    ADS  Google Scholar 

  37. S T Dye et al, Earth Moon Planets 99, 241 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAVIDE D’ANGELO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’ANGELO, D. Low-energy neutrino measurements. Pramana - J Phys 79, 757–780 (2012). https://doi.org/10.1007/s12043-012-0385-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0385-3

Keywords

PACS Nos

Navigation