Skip to main content
Log in

Electroweak symmetry breaking beyond the Standard Model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G Bhattacharyya, Rep. Prog. Phys. 74, 026201 (2011), arXiv:0910.5095 [hep-ph] and references therein

  2. G F Giudice, arXiv:0801.2562 [hep-ph]

  3. R Contino, arXiv:1005.4269 [hep-ph]

  4. C Grojean, PoSEPS-HEP2009, 008 (2009), arXiv:0910.4976 [hep-ph]

  5. See the textbooks on supersymmetry, R N Mohapatra, Unification and supersymmetry: The frontiers of quark-lepton physics (Springer-Verlag, NY, 1992) M Drees, R M Godbole and P Roy, Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics (World Scientific, 2004) H Baer and X Tata, Weak scale supersymmetry: From superfields to scattering events (Cambridge University Press, Cambridge, UK, 2006) See also, R K Kaul, Supersymmetry and supergravity, in: Gravitation, gauge theories and the early universe edited by B R Iyer (Kluwer Academic Publishers, 1989) pp. 487–522

  6. R Barbieri and G F Giudice, Nucl. Phys. B306, 63 (1988)

    Article  ADS  Google Scholar 

  7. A Strumia, J. High Energy Phys. 1104, 073 (2011), arXiv:1101.2195 [hep-ph]

  8. U Ellwanger, G Espitalier-Noel and C Hugonie, arXiv:1107.2472 [hep-ph]

  9. S Cassel, D M Ghilencea, S Kraml, A Lessa and G G Ross, J. High Energy Phys. 1105, 120 (2011), arXiv:1101.4664 [hep-ph]

    Google Scholar 

  10. For reviews on NMSSM, see U Ellwanger, C Hugonie and A M Teixeira, Phys. Rep. 496, 1 (2010), arXiv:0910.1785 [hep-ph] M Maniatis, Int. J. Mod. Phys. A25, 3505 (2010), arXiv:0906.0777 [hep-ph]

    Google Scholar 

  11. M Drees, Int. J. Mod. Phys. A4, 3635 (1989)

    ADS  Google Scholar 

  12. G G Ross and K Schmidt-Hoberg, arXiv:1108.1284 [hep-ph]

  13. S A Abel, S Sarkar and P L White, Nucl. Phys. B454, 663 (1995), arXiv:hep-ph/9506359

    Article  ADS  Google Scholar 

  14. P Lodone, J. High Energy Phys. 1005, 068 (2010), arXiv:1004.1271 [hep-ph]

    Article  ADS  Google Scholar 

  15. G Bhattacharyya and A Romanino, Phys. Rev. D55, 7015 (1997), arXiv:hep-ph/9611243

    ADS  Google Scholar 

  16. M Schmaltz and D Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005), arXiv:hep-ph/0502182 M Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007), arXiv:hep-ph/0512128 M C Chen, Mod. Phys. Lett. A21, 621 (2006), arXiv:hep-ph/0601126

  17. H C Cheng, arXiv:0710.3407 [hep-ph]

  18. R K Kaul, arXiv:0803.0381 [hep-ph]

  19. C Csaki, J Hubisz, G D Kribs, P Meade and J Terning, Phys. Rev. D67, 115002 (2003), arXiv:hep-ph/0211124 J L Hewett, F J Petriello and T G Rizzo, J. High Energy Phys. 0310, 062 (2003), arXiv:hep-ph/0211218 M C Chen and S Dawson, Phys. Rev. D70, 015003 (2004), arXiv:hep-ph/0311032

  20. I Low, J. High Energy Phys. 0410, 067 (2004), arXiv:hep-ph/0409025 H C Cheng and I Low, J. High Energy Phys. 0408, 061 (2004), arXiv:hep-ph/0405243

  21. J Hubisz, P Meade, A Noble and M Perelstein, J. High Energy Phys. 0601, 135 (2006), arXiv:hep-ph/0506042

    Article  ADS  Google Scholar 

  22. J A Casas, J R Espinosa and I Hidalgo, J. High Energy Phys. 0503, 038 (2005), arXiv:hep-ph/0502066

    Article  ADS  Google Scholar 

  23. T Han, H E Logan, B McElrath and L T Wang, Phys. Rev. D67, 095004 (2003), arXiv:hep-ph/0301040

    Google Scholar 

  24. G Burdman, M Perelstein and A Pierce, Phys. Rev. Lett. 90, 241802 (2003), Erratum, ibid. 92, 049903 (2004), arXiv:hep-ph/0212228

  25. M Perelstein, M E Peskin and A Pierce, Phys. Rev. D69, 075002 (2004), arXiv:hep-ph/0310039

    ADS  Google Scholar 

  26. K Agashe, R Contino and A Pomarol, Nucl. Phys. B719, 165 (2005), hep-ph/0412089

    Article  ADS  Google Scholar 

  27. S Rychkov, arXiv:1109.1180 [hep-ph]

  28. M Serone, New J. Phys. 12, 075013 (2010), arXiv:0909.5619 [hep-ph]

    Article  ADS  Google Scholar 

  29. R Contino, Y Nomura and A Pomarol, Nucl. Phys. B671, 148 (2003), arXiv:hep-ph/0306259

    Article  ADS  Google Scholar 

  30. J R Espinosa, C Grojean and M Muhlleitner, J. High Energy Phys. 1005, 065 (2010), arXiv:1003.3251 [hep-ph]

    Article  ADS  Google Scholar 

  31. R Contino and G Servant, J. High Energy Phys. 0806, 026 (2008), arXiv:0801.1679 [hep-ph]

    Article  ADS  Google Scholar 

  32. For a review on Higgsless models, see C Csaki, J Hubisz and P Meade, arXiv:hep-ph/0510275 (TASI Lectures)

  33. C Csaki, C Grojean, H Murayama, L Pilo and J Terning, Phys. Rev. D69, 055006 (2004), arXiv:hep-ph/0305237

    ADS  Google Scholar 

  34. R Barbieri, A Pomarol and R Rattazzi, Phys. Lett. B591, 141 (2004), arXiv:hep-ph/0310285 G Cacciapaglia, C Csaki, C Grojean and J Terning, Phys. Rev. D70, 075014 (2004), arXiv:hep-ph/0401160 H Davoudiasl, J L Hewett, B Lillie and T G Rizzo, Phys. Rev. D70, 015006 (2004), arXiv:hep-ph/0312193

  35. A Birkedal, K Matchev and M Perelstein, Phys. Rev. Lett. 94, 191803 (2005), arXiv:hep-ph/0412278

    Article  Google Scholar 

  36. R Barbieri, B Bellazzini, V S Rychkov and A Varagnolo, Phys. Rev. D76, 115008 (2007), arXiv:0706.0432 [hep-ph] J R Espinosa, C Grojean and M Muhlleitner, J. High Energy Phys. 1005, 065 (2010), arXiv:1003.3251 [hep-ph]

    Google Scholar 

  37. M E Peskin, arXiv:1110.3805 [hep-ph], These proceedings

  38. R Heuer, Whither Colliders After LHC, These proceedings

  39. H Bachacou, BSM Results from LHC, These proceedings

Download references

Acknowledgements

The author would like to acknowledge the hospitality of the CERN PH/TH Division during the writing of this draft and also would like to thank Emilian Dudas, Christophe Grojean, Palash B Pal, and Amitava Raychaudhuri for discussions and clarifications on several issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GAUTAM BHATTACHARYYA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BHATTACHARYYA, G. Electroweak symmetry breaking beyond the Standard Model. Pramana - J Phys 79, 675–690 (2012). https://doi.org/10.1007/s12043-012-0370-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0370-x

Keywords

PACS Nos

Navigation