Skip to main content
Log in

SUSY formalism for the symmetric double well potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T K Jana and P Roy, Phys. Lett. A372, 2368 (2008)

    MathSciNet  ADS  Google Scholar 

  2. J J Sakurai, Modern quantum mechanics (Addison Wesley Publishing Company, 1994) Chapter 4

  3. Claude Cohen-Tannoudji, Bernard Diu and Franck Laloë, Quantum mechanics (Wiley Publication, 1977) Vol. 1

  4. B Mielnik, J. Math. Phys. 25, 3387 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. D J C Fernández, V Hussin and B Mielnik, Phys. Lett. A244, 309 (1998)

    ADS  Google Scholar 

  6. Asim Gangopadhyaya, Prasanta K Panigrahi and Uday P Sukhatme, Phys. Rev. A47, 2720 (1993)

    ADS  Google Scholar 

  7. John Sheridan and Walter Gordy, Phys. Rev. 79, 513 (1950)

    Article  ADS  Google Scholar 

  8. H Margenau, Phys. Rev. 76, 1423 (1949)

    Article  ADS  MATH  Google Scholar 

  9. Moshe Elitzur, arXiv:astro-ph/0105205v1, 11 May 2001

  10. Kristen Rohlfs, Tools of radio astronomy (Springer-Verlag, Berlin and New York, 1986) p. 332

    Google Scholar 

  11. A C Cheung, D M Rank, C H Townes, D D Thornton and W J Welch, Phys. Rev. Lett. 21, 1701 (1968)

    Article  ADS  Google Scholar 

  12. Feng Zhou, Zhuangqi Cao and Qishun Shen, Phys. Rev. A67, 062112 (2003)

    ADS  Google Scholar 

  13. C Quesne, arXiv:1106.1990v1 [math-ph], 10 June 2011

  14. F Finkel, A Gonzalez-Lopez, N Kamran and M A Rodrigues, J. Math. Phys. 40, 3268 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. D J C Fernández, J Negro and L M Nieto, Phys. Lett. A275, 338 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A Roychowdhury for fruitful discussion. One of the authors (Pinaki Patra) is grateful to CSIR (Govt. of India) for fellowship support. Also, the authors would like to thank the referee(s) for the valuable comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PINAKI PATRA.

Appendix

Appendix

In general, the form of γ(β) are:

$$ \begin{array}{rll} \gamma(\beta)&=&\frac{1}{4}\cot^2p -\frac{j\sin p\cot(j+1)p}{\sin jp}\left[1-\frac{j\sin p}{\sin jp\sin 2(j+1p)}\right] \\ &&+\,\frac{1}{[j\sin p-\sin jp\cos(j+1)p]^2}\\ &&\times\,\left[j\sin jp+\frac{j}{2}\sin^2jp-\frac{j^2}{4}(1+12j)\sin p\sin(2j+1)p \right.\\ &&\;\;\;\quad +\,\left(j^2+j+\frac{1}{4}\right)\frac{\sin^2jp}{\sin^2(j+1)p}\\ &&\;\;\;\quad+\left(j^2+\frac{1}{4}\right)\sin^2jp\sin^2(j+1)p +j\sin^2jp\sin^2(2j+1)p\\ &&\;\;\;\quad +\,\frac{j^2\cos jp}{\sin(j+1)p}(\sin p-\sin jp) +\frac{j^4\sin^p\text{cos}(2j+1)p}{\sin jp\sin(j+1)p}\\ &&\;\;\;\quad\left.\times\left[1+ \frac{\tan(2j+1)p\sin(2j+1)p}{4\sin jp\sin(j+1)p}\right]\right] \end{array} $$
(22)

for regions (1) and (2) and

$$ \begin{array}{rll} \gamma(\beta)&=&\frac{1}{\Theta_\text{s}}\left[\frac{3}{2}\alpha^2_\text{s}\alpha^2_{\text{s}+1}+2\alpha_\text{s}\alpha_{\text{s}+1}\,{\rm tanh}\,A_{\rm s}\,{\rm tanh}\,C_{\rm s}(\alpha^2_{\text{s}+1}\,{\rm sinh} \,A_{\rm s}\,{\rm cosh}\,A_{\rm s} \right. \\ &&\;\;\phantom{\frac{1}{\Theta_\text{s}}} -\,\alpha^2_{\rm s}\,{\rm sinh}\,C_{\rm s}\,{\rm cosh}\,C_{\rm s})-(\alpha^{4}_{{\rm s}+1}\,{\rm cosh}^{2}\,A_{\rm s}+\alpha^{4}_{\rm s}\,{\rm cosh}^{2}\,{C_{\rm s}})\\ &&\;\;\phantom{\frac{1}{\Theta_s}}+\,\frac{1}{4}\,{\rm cosh}^2\,C_{\rm s}\,{\rm sech}^2\,A_s+\frac{1}{4}\,{\rm cosh}^2\,A_{\rm s}\,{\rm sech}^2\,C_{\rm s} \\ &&\;\;\phantom{\frac{1}{\Theta_s}}\times\left(j_s+\frac{1}{2}\right)(\alpha^2_{\rm s}\,{\rm cosh}^2\,C_{\rm s}-\alpha^2_{{\rm s}+1}\,{\rm cosh}^2\,A_{\rm s})\\ &&\;\;\phantom{\frac{1}{\Theta_s}}\left.+\,\frac{(2j_{\rm s}+1)^2}{4}\,{\rm cosh}^2\,A_{\rm s}\,{\rm cosh}^2\,C_{\rm s}\right] \\ &&-\,\frac{1}{4}(\alpha^2_{{\rm s}+1}\,{\rm tanh}^2\,C_{\rm s}+\alpha^2_{\rm s}\,{\rm tanh}^2\,A_{\rm s}-2\alpha_{\rm s}\alpha_{{\rm s}+1}\,{\rm tanh}\,A_{\rm s}\,{\rm tanh}\,C_{\rm s}) \end{array} $$
(23)

for region (3) and symmetric case. Here Θs = [α s + 1 cosh A s sinh C s − α s cosh C s sinh A s].

For region (3) and antisymmetric case.

$$ \begin{array}{rll} \gamma(\beta)&=&\frac{1}{\Theta_\text{a}}\left[2\alpha^2_\text{a}\alpha^2_{\text{a}+1}\vphantom{\left(j_\text{a}+\frac{1}{2}\right)^2}\right.\\ &&\;\;\phantom{\frac{1}{\Theta_\text{a}}}-\,\alpha_\text{a}\alpha_{\text{a}+1}\,{\rm coth}\,A_{\rm a}\,{\rm coth}\,C_{\rm a}(\alpha^2_{{\rm a}+1}\,{\rm sinh}^2\,A_{\rm a} +\alpha^2_{\rm a}\,{\rm sinh}^2\,C_{\rm a})\\ &&\;\;\phantom{\frac{1}{\Theta_a}}+\,\alpha^{4}\,{\rm sinh}^2\,A_{\rm a}+\alpha^{4}\,{\rm sinh}^2\,A_{\rm a} \times\frac{\alpha^2_{a+1}}{4}\,{\rm sinh}\,A_{\rm a}\,{\rm cosech}\,C_{\rm a}\\ &&\;\;\phantom{\frac{1}{\Theta_a}}-\, \frac{\alpha^2_{\rm a}}{4}\,{\rm sinh}\,C_{\rm a}\,{\rm cosech}\,A_{\rm a}+\left(j_{\rm a}+\frac{1}{2}\right)(\alpha^2_{{\rm a}+1}\,{\rm sinh}^2\,A_{\rm a}\\ &&\;\;\phantom{\frac{1}{\Theta_a}}-\left.\alpha^2_{\rm a}\,{\rm sinh}^2\,C_{\rm a})\left(j_\text{a}+\frac{1}{2}\right)^2\,{\rm sinh}^2\,A_{\rm a}\,{\rm sinh}^2\,C_{\rm a}\right]\\ &&-\,\left(\frac{\alpha^2{\text{a}+1}}{4}\,{\rm coth}^2\,C_{\rm a}+ \frac{\alpha^2_{\rm a}}{4}{\rm coth}^2\,A_{\rm a} -2\alpha_{\rm a}\alpha_{{\rm a}+1}\,{\rm coth}\,A_{\rm a}\,{\rm coth}\,C_{\rm a}\right),\\ \end{array} $$
(24)

where \(\Theta_{\rm a}=(\alpha_{{\rm a}+1}\,{\rm sinh}\,A_{\rm a}\,{\rm cosh}\,C_{\rm a}-\alpha_{\rm a}\,{\rm cosh}\,A_{\rm a}\,{\rm sinh}\,C_{\rm a})^2\alpha\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

PATRA, P., DUTTA, A. & Saha, J.P. SUSY formalism for the symmetric double well potential. Pramana - J Phys 80, 21–30 (2013). https://doi.org/10.1007/s12043-012-0355-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0355-9

Keywords

PACS Nos

Navigation