Skip to main content
Log in

Calibration-free laser-induced breakdown spectroscopy for quantitative elemental analysis of materials

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The application of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) for quantitative analysis of materials, illustrated by CF-LIBS applied to a brass sample of known composition, is presented in this paper. The LIBS plasma is produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a brass sample in air at atmospheric pressure. The time-resolved atomic and ionic emission lines of Cu and Zn from the LIBS spectra recorded by an Echelle spectrograph coupled with a gated intensified charge coupled detector are used for the plasma characterization and the quantitative analysis of the sample. The time delay where the plasma is optically thin and is also in local thermodynamic equilibrium (LTE), necessary for the elemental analysis of samples from the LIBS spectra, is deduced. An algorithm relating the experimentally measured spectral intensity values with the basic physics of the plasma is developed. Using the algorithm, the Zn and Cu concentrations in the brass sample are determined. The analytical results obtained from the CF-LIBS technique agree well with the certified values of the elements in the sample, with an accuracy error <1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D A Cremers and L J Radziemski, Handbook of laser-induced breakdown spectroscopy (John Wiley & Sons Ltd, West Sussex, 2006)

    Book  Google Scholar 

  2. C Aragon, J A Aguilera and F Penalba, Appl. Spectrosc. 53, 1259 (1999)

    Article  ADS  Google Scholar 

  3. I Bassiotis, A Diamantopoulou, A Giannoudakos, F R Kalantzopoulou and M Kompitsas, Spectrochim. Acta B56, 671 (2001)

    ADS  Google Scholar 

  4. J D Winefordner, I B Gornushkin, T Correll, E Gibb, B W Smith and N Omenetto, J. Anal.At. Spectrom. 19, 1061 (2004)

    Article  Google Scholar 

  5. B Salle, D A Cremers, S Maurice and R C Wiens, Spectrochim. Acta B60, 479 (2005)

    ADS  Google Scholar 

  6. G Cristoforetti, S Legnaioli, V Palledchi, A Salvetti, E Tognoni, P A Benedetti, F Brioschi and F Ferrario, J. Anal. At. Spectrom. 21, 697 (2006)

    Article  Google Scholar 

  7. G P Gupta, B M Suri, A Verma, M Sunderaraman, V K Unnikrishnan, K Alti, V B Kartha and C Santhosh, J. Alloys Compd. 509, 3740 (2011)

    Article  Google Scholar 

  8. A Ciucci, V Palleschi, S Rastelli, A Salvetti and E Tognoni, Appl. Spectrosc. 53, 960 (1999)

    Article  ADS  Google Scholar 

  9. E Tognoni, G Cristoforetti, S Legnaioli, V Palleschi, A Salvetti, M Mueller, U Panne and I Gornushkin, Spectrochim. Acta B62, 1287 (2007)

    ADS  Google Scholar 

  10. F Colao, R Fantoni, V Lazic, I Caneve, A Giardini and V Spizzichino, J. Anal. At. Spectrom. 19, 502 (2004)

    Article  Google Scholar 

  11. I Fornarini, F Colao, R Fantoni, V Lazic and V Spizzichino, Spectrochim. Acta B60, 1186 (2005)

    ADS  Google Scholar 

  12. V S Burakov and S N Raikov, Spectrochim. Acta B62, 217 (2007)

    Article  ADS  Google Scholar 

  13. J A Aguilera, C Aragon, G Cristoforetti and E Tognoni, Spectrochim. Acta B64, 685 (2009)

    ADS  Google Scholar 

  14. K K Herrera, E Tognoni, N Omenetto, B W Smith and J D Winefordner, J. Anal. At. Spectrom. 24, 413 (2009)

    Article  Google Scholar 

  15. M V Belkov, V S Burakov, V V Kiris, N M Kozhukh and S N Raikov, J. Appl. Spectrosc. 72, 376 (2005)

    Article  ADS  Google Scholar 

  16. F Colao, R Fantoni, V Lazic, A Paolini, F Fabbri, G G Ori, L Marinangeli and A Baliva, Planet. Space Sci. 52, 117 (2004)

    Article  ADS  Google Scholar 

  17. B Salle, J I Lacour, P Mauchien, P Fichet, S Maurice and G Manhes, Spectrochim. Acta B61, 301 (2006)

    ADS  Google Scholar 

  18. A De Giacomo, M Dell’Aglio, O De Pascale, S Longo and M Capitelli, Spectrochim. Acta B62, 1606 (2007)

    ADS  Google Scholar 

  19. J M Gomba, C D’Angelo, D Bertuccelli and G Bertuccelli, Spectrochim. Acta B56, 695 (2001)

    ADS  Google Scholar 

  20. K Kagawa, K Kawai, M Tani and T Kobayashi, Appl. Spectrosc. 48, 198 (1994)

    Article  ADS  Google Scholar 

  21. X L Mao, A C Ciocan, O V Borisov and R E Russo, Appl. Surf. Sci. 127–129, 262 (1998)

    Article  Google Scholar 

  22. H R Griem, Principles of plasma spectroscopy (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  23. V K Unnikrishnan, K Alti, V B Kartha, C Santhosh, G P Gupta and B M Suri, Pramana – J. Phys. 74, 983 (2010)

    Article  Google Scholar 

  24. NIST Atomic Spectra Database, http://physics.nist.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C SANTHOSH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

UNNIKRISHNAN, V.K., MRIDUL, K., NAYAK, R. et al. Calibration-free laser-induced breakdown spectroscopy for quantitative elemental analysis of materials. Pramana - J Phys 79, 299–310 (2012). https://doi.org/10.1007/s12043-012-0298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0298-1

Keywords

PACS Nos

Navigation