Skip to main content
Log in

Nonlinear fractional relaxation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We define a nonlinear model for fractional relaxation phenomena. We use ε-expansion method to analyse this model. By studying the fundamental solutions of this model we find that when t → 0 the model exhibits a fast decay rate and when t → ∞ the model exhibits a power-law decay. By analysing the frequency response we find a logarithmic enhancement for the relative ratio of susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K B Oldham and J Spanier, The fractional calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  2. I Pudlubny, Fractional differential equations (Academic Press, San Diego, CA, 1999)

    Google Scholar 

  3. R Hilfer, Applications of fractional calculus in physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  4. B J West, M Bologna and P Grigolini, Physics of fractal operators (Springer-Verlag, New York, 2003)

    Google Scholar 

  5. G M Zaslavsky, Hamiltonian chaos and fractional dynamics (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  6. F Mainardi, Chaos, Solitons and Fractals 7, 1461 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R Hilfer, J. Non-Crystalline Solids 305, 122 (2002)

    Article  ADS  Google Scholar 

  8. J Jadźyn, D Baumen, J L Déjardin, M Ginovska and G Czechowski, Acta Phys. Pol. A108, 479 (2005)

    ADS  Google Scholar 

  9. V V Novikov and V P Privalko, Phys. Rev. E64, 031504 (2001)

    ADS  Google Scholar 

  10. A Tofighi and A Golestani, Physica A387, 1807 (2008)

    ADS  Google Scholar 

  11. V E Tarasov and G M Zaslavsky, Physica A368, 339 (2006)

    MathSciNet  Google Scholar 

  12. A Tofighi and H Nasrolahpour, Physica A374, 41 (2007)

    ADS  Google Scholar 

  13. Z M Odibat and S Momani, Int. J. Nonlin. Sci. Num. 7, 27 (2006)

    Article  Google Scholar 

  14. A T Giannitsis, P C Fannin and S W Charles, J. Magn. Magn. Mater. 289, 165 (2005)

    Article  ADS  Google Scholar 

  15. G E Draganescu and A Ercuta, J. Optoelectron. Adv. Mater. 5, 301 (2003)

    Google Scholar 

  16. M Lemanska and Z Jaeger, Physica D170, 72 (2002)

    MathSciNet  ADS  Google Scholar 

  17. J L Déjardin, Phys. Rev. E68, 031108 (2003)

    Google Scholar 

  18. M A Abramowitz and I A Stegun (Eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn (Dover, New York, 1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A TOFIGHI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

TOFIGHI, A. Nonlinear fractional relaxation. Pramana - J Phys 78, 549–554 (2012). https://doi.org/10.1007/s12043-012-0264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0264-y

Keywords

PACS No.

Navigation