Skip to main content
Log in

Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and the temporal growth rate are obtained analytically. In order to compare with the usual electron–ion plasmas, the effect of positron concentration is considered. It is found that the increase in positron-to-electron density ratio shifts the instability region towards higher vertical wave numbers but does not cause displacement along the parallel wave number direction, and the growth rate increases as the positron-to-electron density ratio increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Piran, Phys. Rep. 314, 575 (1999)

    Article  ADS  Google Scholar 

  2. T Piran, Rev . Mod. Phys. 76, 1143 (2004)

    Article  ADS  Google Scholar 

  3. M C Begelman, R D Blandford and M J Rees, Rev . Mod. Phys. 56, 255 (1984)

    Article  ADS  Google Scholar 

  4. M A Ruderman and P G Sutherland, Astrophys. J. 196, 51 (1975)

    Article  ADS  Google Scholar 

  5. G W Gibbons, S W Hawking and S T C Siklos, The v ery early Univ erse (Cambridge University Press, New York, 1983)

    Google Scholar 

  6. E P Liang, S C Wilks and M Tabak, Phys. Rev . Lett. 81, 4887 (1998)

    Article  ADS  Google Scholar 

  7. P Helander and D J Ward, Phys. Rev . Lett. 90, 135004 (2003)

    Article  ADS  Google Scholar 

  8. A Heidari, S F Tayyari and R E Sammelson, Commun. Nonlinear Sci. Numer. Simulat. 14, 4090 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A Mushtaq and H A Shah, Phys. Plasmas 12, 012301 (2005)

    Article  ADS  Google Scholar 

  10. N Ya Kotsarenko, G A Stewart, J J S Mondragon, S V Koshevaya, A N Kotsarenko and P A Marquez, Phys. Scr. 59, 302 (1999)

    Article  ADS  Google Scholar 

  11. V I Berezhiani, M Y EL-Ashry and U A Mofiz, Phys. Rev . E50, 448 (1994)

    ADS  Google Scholar 

  12. A S Bains, A P Misra, N S Saini and T S Gill, Phys. Plasmas 17, 012103 (2010)

    Article  ADS  Google Scholar 

  13. J Zhang, Y Wang and L Wu, Phys. Plasmas 16, 062102 (2009)

    Article  Google Scholar 

  14. N Jehan, M Salahuddin, H Saleem and A M Mirza, Phys. Plasmas 15, 092301 (2008)

    Article  Google Scholar 

  15. S Q Liu and X Q Li, Phys. Plasmas 7, 3405 (2000)

    Article  ADS  Google Scholar 

  16. G Lehmann, E W Laedke and K H Spatschek, Phys. Plasmas 15, 072307 (2008)

    Article  Google Scholar 

  17. V E Zakharov and L A Ostrovsky, Physica D238, 540 (2009)

    MathSciNet  MATH  Google Scholar 

  18. M Marklund, B Eliasson and P K Shukla, Phys. Plasmas 13, 083102 (2006)

    Article  Google Scholar 

  19. O B Shiryaev, Phys. Plasmas 13, 112304 (2006)

    Article  ADS  Google Scholar 

  20. N L Shatashvili, J I Javakhishvili and H Kaya, Astrophys. Space Sci. 250, 109 (1997)

    Article  ADS  MATH  Google Scholar 

  21. I Kourakis, F Verheest and N F Cramer, Phys. Plasmas 14, 022306 (2007)

    Article  Google Scholar 

  22. P K Shukla, L Stenflo and R Fedele, Phys. Plasmas 10, 310 (2003)

    Article  ADS  Google Scholar 

  23. V I Karpman and E M Krushkal, Sov. Phys. JETP 28, 277 (1969)

    ADS  Google Scholar 

  24. X Q Li, Turbulent plasma physics (Beijing Normal University Press, Beijing, 1987)

    Google Scholar 

  25. H Y Chen, S Q Liu and X Q Li, Optik 122, 599 (2010)

    Article  ADS  Google Scholar 

  26. H Y Chen, S Q Liu and X Q Li, Phys. Scr. 83, 035502 (2011)

    Article  Google Scholar 

  27. P C Clemmow, J. Plasma Phys. 13, 231 (1975)

    Article  ADS  Google Scholar 

  28. L I Rudakov and V N Tsytovich, Phys. Rep. 40, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  29. X Q Li, S Q Liu and X Y Tao, Contrib. Plasma Phys. 48, 361 (2008)

    Article  ADS  Google Scholar 

  30. X Q Li, Collapsing dynamics of plasmons (Chinese Science and Technology Press, Beijing, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAN QIU LIU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIU, S.Q., TANG, W. & Li, X.Q. Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma. Pramana - J Phys 78, 439–449 (2012). https://doi.org/10.1007/s12043-011-0235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0235-8

Keywords

PACS Nos

Navigation