Skip to main content
Log in

Schwarzian derivative as a proof of the chaotic behaviour

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In recent years, a sufficient condition for determining chaotic behaviours of the non-linear systems has been characterized by the negative Schwarzian derivative (Hacıbekiroǧlu et al, Nonlinear Anal.: Real World Appl. 10, 1270 (2009)). In this work, the Schwarzian derivative has been calculated for investigating the quantum chaotic transition points in the high-temperature superconducting frame of reference, which is known as a nonlinear dynamical system that displays some macroscopic quantum effects. In our previous works, two quantum chaotic transition points of the critical transition temperature, T c, and paramagnetic Meissner transition temperature, T PME, have been phenomenologically predicted for the mercury-based high-temperature superconductors (Onbaşlı et al, Chaos, Solitons and Fractals 42, 1980 (2009); Aslan et al, J. Phys.: Conf. Ser. 153, 012002 (2009); Çataltepe, Superconductor (Sciyo Company, India, 2010)). The T c, at which the one-dimensional global gauge symmetry is spontaneously broken, refers to the second-order phase transition, whereas the T PME, at which time reversal symmetry is broken, indicates the change in the direction of orbital current in the system (Onbaşlı et al, Chaos, Solitons and Fractals 42, 1980 (2009)). In this context, the chaotic behaviour of the mercury-based high-temperature superconductors has been investigated by means of the Schwarzian derivative of the magnetic moment versus temperature. In all calculations, the Schwarzian derivatives have been found to be negative at both T c and T PME which are in agreement with the chaotic behaviour of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X F Pang and Y P Feng, Quantum mechanics in nonlinear systems (World Scientific Publishing, Singapore, 2005)

    Book  MATH  Google Scholar 

  2. Physics Survey Committee, Physics through the 1990’s condensed matter physics (National Academy Press, Washington DC, 1986)

    Google Scholar 

  3. Ü Onbaşlı, Z Güven Özdemir and Ö Aslan, Chaos, Solitons and Fractals 42, 1980 (2009)

    Article  ADS  Google Scholar 

  4. Ö Aslan, Z Güven Özdemir, S S Keskin and Ü Onbaşlı, J. Phys.: Conf. Ser. 153, 012002 (2009)

    Article  ADS  Google Scholar 

  5. Ö Aslan Çataltepe, in: Superconductor edited by A M Luiz (Sciyo Company, India, 2010) pp. 273–290 (ISBN:978-953-307-107-7). Available in: http://www.intechopen.com/articles/show/title/some-chaotic-points-in-cuprate-superconductors

  6. P S Lomdahl, J. Stat. Phys. 39, 551 (1985)

    Article  ADS  Google Scholar 

  7. M Cirillo and N F Pedersen, Phys. Lett. A90(3), 150 (1982)

    ADS  Google Scholar 

  8. J H Dalsgaard, A Larsen and J Mygind, Physica B165–166(2), 1661 (1990)

    Google Scholar 

  9. W J Yeh, O G Symko and D J Zheng, Phys. Rev. B42(7), 4080 (1990)

    ADS  Google Scholar 

  10. X Yao, J Z Wu and C S Ting, Phys. Rev. B42(1A), 244 (1990)

    ADS  Google Scholar 

  11. S Rajasekar and M Lakshmanan, Phys. Lett. A147(5–6), 264 (1990)

    MathSciNet  ADS  Google Scholar 

  12. K N Yugay, N V Bilinov and I V Shirokov, Phys. Rev. B51(18), 12737 (1995)

    ADS  Google Scholar 

  13. A Mourachkine, High-temperature superconductivity: The nonlinear mechanism and tunneling measurements (Kluwer Academic Publishers, New York, 2002)

    MATH  Google Scholar 

  14. N K Hayles, Chaos and order: Complex dynamics in literature and science (The University of Chicago Press, Chicago, 1991)

    Google Scholar 

  15. A P Prtogenov and D A Ryndyk, International Centre for Theoretical Physics, IC/92/211, Miramare-Triestre, August 1992, pp. 1–15

  16. J A Melsen, P W Brouwer, K M Frahm and C W J Beenakker, Europhys. Lett. 35(1), 7 (1996)

    Article  ADS  Google Scholar 

  17. Ph Jacquod, H Schomerus and C W K Beenakker, Phys. Rev. Lett. 90(20), 207004-1 (2003)

    Article  ADS  Google Scholar 

  18. S N Evangelou, Physica B296, 62 (2001)

    ADS  Google Scholar 

  19. T Tanaka, K Sakatoku and S Yamamoto, Opt. Commun. 171, 233 (1999)

    Article  ADS  Google Scholar 

  20. B Gruber, Symmetries in science XI (Springer, New York, 2004)

    Google Scholar 

  21. Ü Onbaşli, Y T Wang, A Naziripour, R Tello, W Kiehl and A M Hermann, Phys. Status Solidi B194, 371 (1996)

    Article  ADS  Google Scholar 

  22. G Hacıbekiroǧlu, M Çaǧlar and Y Polatoǧlu, Nonlin. Anal.: Real World Appl. 10, 1270 (2009)

    Article  Google Scholar 

  23. E Kummer, J. Reine. Angew. Math. 15, 39; 127 (1836)

    Google Scholar 

  24. T Needham, Visual complex analysis (Clarendon Press, New York, 2000)

    Google Scholar 

  25. M Chuaqui, P Duren, B Osgood, Schwarzian derivatives of analytic and harmonic functions, Available online in: http://ee.stanford.edu/~osgood/papers/Sch-Talk.pdf

  26. Z Güven Özdemir and Ü Onbaşlı, in: Superconductor edited by A M Luiz (Sciyo Company, India, 2010) pp. 291–310 (ISBN:978-953-307-107-7). Available: http://www.intechopen.com/articles/show/title/superconductors-and-quantum-gravity

  27. Z G Özdemir, Ö Aslan and Ü Onbaşlı, J. Phys. Chem. Solids 67, 453 (2006)

    Article  ADS  Google Scholar 

  28. Z G Özdemir, Ö Aslan and Ü Onbaşlı, Pramana – J. Phys. 73, 755 (2009)

    Article  Google Scholar 

  29. J Guckhenheimer, Commun. Math. Phys. 70, 133 (1979)

    Article  ADS  Google Scholar 

  30. P Collet and J P Eckmann, Iterated maps on the interval as dynamical systems (Birkhäuser, Boston, USA, 1980)

    MATH  Google Scholar 

  31. L Katz, Chaos, Solitons and Fractals 7, 1495 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G S Medvedev, Physica D202, 37 (2005)

    ADS  Google Scholar 

  33. G S Medvedev, Phys. Rev. Lett. 97, 048102 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZEYNEP GÜVEN ÖZDEMİR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ÖZDEMİR, Z.G. Schwarzian derivative as a proof of the chaotic behaviour. Pramana - J Phys 77, 1159–1169 (2011). https://doi.org/10.1007/s12043-011-0205-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0205-1

Keywords

PACS Nos

Navigation