Skip to main content
Log in

The width of Liesegang bands: A study using moving boundary model and simulation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The pattern formation in reaction–diffusion systems was studied by invoking the provisions contained in the moving boundary model. The model claims that the phase separation mechanism is responsible for separating the colloidal phase of precipitants into band and non-band regions. The relation between the band separation and its width are invariably related to the concentration of the reacting components. It was observed that this model provides critical condition for the band formation in semi-idealized diffusion systems. An algorithm for generating the band structure was designed, and the simulated pattern shows a close resemblance with the experimentally observed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. E J Crampin, W W Hackborn and P K Maini, Bull. Math. Biol. 64, 747 (2002)

    Article  Google Scholar 

  2. R E Liesegang, Naturwiss. Wochenschr. 11, 353 (1896)

    Google Scholar 

  3. I Bena, M Droz, I Lagzi, K Martens, Z Rácz and A Volford, Phys. Rev. Lett. 101, 075701 (2008)

    Article  ADS  Google Scholar 

  4. A M Turing, Phil. Trans. R. Soc. B237, 37 (1952)

    ADS  Google Scholar 

  5. M Al-Ghoul and R Sultan, J. Phys. Chem. A105, 8053 (2001)

    Google Scholar 

  6. T Antal, I Bena, M Droz, K Martens and Z Rácz, Phys. Rev. E76, 046203 (2007)

    ADS  Google Scholar 

  7. Q Ouyang and H L Swinney, Nature 352, 610 (1991)

    Article  ADS  Google Scholar 

  8. K J Lee, W D McCormick, H L Swinney and Z Nosticziusz, J. Chem. Phys. 96, 4048 (1992)

    Article  ADS  Google Scholar 

  9. V K Vanag and I R Epstein, Phys. Rev. Lett. 87, 228301 (2001)

    Article  ADS  Google Scholar 

  10. J Ross, Adam P Arkin and Stefan C Mueller, J. Phys. Chem. 99, 10417 (1995)

    Article  Google Scholar 

  11. J Horvath, I Szalai and P D Kepper, Physica D239, 776 (2010)

    ADS  Google Scholar 

  12. E S Hedges and R V Hanley, J. Chem. Soc. Article no. CCCLX, 2714 (1928)

  13. D N Ghosh, J. Indian Chem. Soc. 1, 509 (1930)

    Google Scholar 

  14. M Flicker and J Ross, J. Chem. Phys. 60, 3458 (1974)

    Article  ADS  Google Scholar 

  15. H W Morse and G W Pierce, Z. Phys. Chem. 45, 589 (1903)

    Google Scholar 

  16. H W Morse and G W Pierce, Proc. Am. Acad. Arts Sci. 38, 625 (1903)

    Article  Google Scholar 

  17. A Einstein, Ann. Phys. 4th Ser. xvII, 549 (1905)

    Article  ADS  Google Scholar 

  18. K Jablczynski, Bull. Soc. Chim. Fr. 33, 1592 (1923)

    Google Scholar 

  19. T Antal, M Droz, J Magnin, Z Rácz and M Zrinyi, J. Chem. Phys. 109, 9479 (1998)

    Article  ADS  Google Scholar 

  20. A Packter, Kolloid Zeitschrift. 142, 109 (1955)

    Article  Google Scholar 

  21. A Packter and R Matalon, J. Colloid Sci. 10, 46 (1955)

    Article  Google Scholar 

  22. K M Pillai, V K Vaidyan and M A Ittyachen, Colloid Polym. Sci. 258, 831 (1980)

    Article  Google Scholar 

  23. B Chopard, P Luthi and M Droz, Phys. Rev. Lett. 72, 1384 (1994)

    Article  ADS  Google Scholar 

  24. M Droz, J Magnin and M Zrinyi, J. Chem. Phys. 110, 9618 (1999)

    Article  ADS  Google Scholar 

  25. M Droz, J. Stat. Phys. 101, 509 (2000)

    Article  ADS  MATH  Google Scholar 

  26. W Ostwald, Z. Phys. 23, 365 (1897)

    Google Scholar 

  27. C Wagner, J. Colloid Sci. 5, 85 (1950)

    Article  Google Scholar 

  28. S Prager, J. Chem. Phys. 25, 279 (1956)

    Article  ADS  Google Scholar 

  29. R Lovett, P Ortoleva and J Ross, J. Chem. Phys. 69, 947 (1978)

    Article  ADS  Google Scholar 

  30. R Feeney, S L Schmidt, P Strickholm, J Chadam and P Ortoleva, J. Chem. Phys. 78, 293 (1983)

    Article  Google Scholar 

  31. I M Lifshitz and V V Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  ADS  Google Scholar 

  32. S Shinohara, J. Phys. Soc. Jpn 29, 1073 (1970)

    Article  ADS  Google Scholar 

  33. G Venzl and J Ross, J. Chem. Phys. 77, 1308 (1982)

    Article  ADS  Google Scholar 

  34. G Venzl, J. Chem. Phys. 85, 1996 (1986)

    Article  ADS  Google Scholar 

  35. J George and G Varghese, Chem. Phys. Lett. 362, 8 (2002)

    Article  ADS  Google Scholar 

  36. J George and G Varghese, J. Colloid Interface Sci. 282, 397 (2005)

    Article  Google Scholar 

  37. D A B Young, Colloid Polym. Sci. 278, 464 (2000)

    Article  Google Scholar 

  38. D Gunton, M S Miguel and P S Sahni, Phase transition and critical phenomena edited by C Domb and J L Lebowitz (Academic Press, New York, 1983)

    Google Scholar 

  39. T Antal, M Droz, J Magnin and Z Rácz, Phys. Rev. Lett. 83, 2880 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GEORGE VARGHESE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

THOMAS, S., VARGHESE, G. & LAGZI, I. The width of Liesegang bands: A study using moving boundary model and simulation. Pramana - J Phys 78, 135–145 (2012). https://doi.org/10.1007/s12043-011-0204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0204-2

Keywords

PACS Nos

Navigation