Skip to main content
Log in

Estimate of stellar masses from their QPO frequencies

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Kilohertz quasiperiodic oscillations (kHz QPOs) are observed in binary stellar systems. For such a system, the stellar radius is very close to the marginally stable orbit R ms as predicted by Einstein’s general relativity. Many models have been proposed to explain the origin of the kHz QPO features in the binaries. Here we start from the work of Li et al (Phys. Rev . Lett. 83, 3776 (1999)) who in 1999, from the unique millisecond X-ray pulsations, suggested SAX J1808.4−3658 to be a strange star, from an accurate determination of its rotation period. It showed kHz QPOs eight years ago and so far it is the only set that has been observed. We suggest that the mass of four compact stars SAX J1808.4−3658, KS 1731−260, SAX J1750.8−2900 and IGR J17191−2821 can be determined from the difference in the observed kHz QPOs of these stars. It is exciting to be able to give an estimate of the mass of the star and three other compact stars in low-mass X-ray binaries using their observed kHz QPOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M van der Klis, J Swank, W Zhang, K Jahoda, E Morgan, W Lewin, B Vaughan and J van Paradijs, IAU Circ. 6319, 1 (1996)

    ADS  Google Scholar 

  2. M van der Klis, Compact stellar X-ray sources (Cambridge Univ. Press, 2006), ISBN-13:978-0521826594); arXiv:astro-ph/0410551

  3. T E Strohmayer, W Zhang, J H Swank, A Smale, L Titarchuk and C Day, Astrophys. J. 469, L9 (1996)

    Article  ADS  Google Scholar 

  4. M A Abramowicz and W Kluzniak, Astron. Astrophys. 374, L19 (2001)

    Article  ADS  Google Scholar 

  5. W Kluzniak and M A Abramowicz, The physics of kHz QPOs strong gravity coupled anharmonic oscillators, arXiv:astro-ph/0105057 W Kluzniak and M A Abramowicz, Acta Phys. Polon. B32, 3605 (2001)

    Google Scholar 

  6. P Rebusco, New Astron. Rev . 51, 855 (2008), arXiv:0801.3658

    Article  ADS  Google Scholar 

  7. L Titarchuk and V Osherovich, Astrophys. J. 518, L95 (1999)

    Article  ADS  Google Scholar 

  8. X-D Li, S Ray, J Dey, M Dey and I Bombaci, Astrophys. J. 527, L51 (1999)

    Article  ADS  Google Scholar 

  9. E Ford et al, Astrophys. J. 475, L123 (1997)

    Article  ADS  Google Scholar 

  10. R A D Wijnands et al, Astrophys. J. 479, L141 (1997)

    Article  ADS  Google Scholar 

  11. T E Strohmayer, J H Swank and W Zhang, Astrophys. J. 503, L147 (1998)

    Article  ADS  Google Scholar 

  12. M C Miller, F K Lamb and D Psaltis, Astrophys. J. 508, 791 (1998)

    Article  ADS  Google Scholar 

  13. M van der Klis, Proc. of the 3rd William Fairbank Meeting, Rome, June 29–July 4 1998, arXiv:astro-ph/9812395

  14. M Méndez, M van der Klis, R A D Wijnands, E C Ford, J Van Paradijs and B A Vaughan, Astrophys. J. 505, L23 (1998)

    Article  Google Scholar 

  15. E Ford et al, Astrophys. J. 508, L155 (1998)

    Article  ADS  Google Scholar 

  16. M Méndez, M van der Klis and J van Paradijs, Astrophys. J. 506, L117 (1998)

    Article  Google Scholar 

  17. M Méndez and M van der Klis, Astrophys. J. 517, L51 (1999)

    Article  Google Scholar 

  18. V Osherovich and L Titarchuk, Astrophys. J. 522, L113 (1999)

    Article  ADS  Google Scholar 

  19. V Osherovich and L Titarchuk, Astrophys. J. 523, L73 (1999)

    Article  ADS  Google Scholar 

  20. M Méndez and T Belloni, Mon. Not. R. Astron. Soc. 381, 790 (2007), arXiv:0708.0015v1

    Article  ADS  Google Scholar 

  21. X-D Li, I Bombaci, M Dey, J Dey and E P J van den Heuvel, Phys. Rev . Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

  22. J M Bardeen, W H Press and S A Teukolsky, Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  23. P Elebert et al, Mon. Not. R. Astron. Soc. 395, 884 (2009)

    Article  ADS  Google Scholar 

  24. M Dey, I Bombaci, J Dey, S Ray and B C Samanta, Phys. Lett. B438, 123 (1998), arXiv:astro-ph/9810065

    ADS  Google Scholar 

  25. M Bagchi, S Ray, M Dey and J Dey, Astron. Astrophys. 450, 431 (2006)

    Article  ADS  Google Scholar 

  26. T Gangopadhyay, X-D Li, S Ray, M Dey and J Dey, kHz QPOs in LMXBs, relations between different frequencies and compactness of stars, arXiv:1102.2088; New Astron. 17, 43 (2012)

    Article  ADS  Google Scholar 

  27. T Klahn, D Blaschke et al, Phys. Rev . C74, 035802 (2006)

    ADS  Google Scholar 

  28. D J Nice et al, Astrophys. J. 634, 1242 (2005)

    Article  ADS  Google Scholar 

  29. F Özel, Nature 441, 1115 (2006)

    Article  ADS  Google Scholar 

  30. T Belloni, M Méndez and J Homan, Astron. Astrophys. 437, 209 (2005)

    Article  ADS  Google Scholar 

  31. T Belloni, M Méndez and J Homan, Mon. Not. R. Astron. Soc. 376, 1133 (2007), arXiv:astro-ph/0702157

    Article  ADS  Google Scholar 

  32. H Yin, C Zhang, Y Zhao, Y Lei, L Song and F Zhang, Astron. Astrophys. 471, 381 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUBHARTHI RAY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAY, S., GANGOPADHYAY, T., DEY, J. et al. Estimate of stellar masses from their QPO frequencies. Pramana - J Phys 77, 571–579 (2011). https://doi.org/10.1007/s12043-011-0176-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0176-2

Keywords

PACS Nos

Navigation