Skip to main content
Log in

Temperature evolution during dissipative collapse

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this particular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by contributions from the temperature gradient induced by perturbations as well as relaxational effects within the stellar core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A K G de Oliveira, N O Santos and C A Kolassis, Mon. Not. R. Astron. Soc. 216, 1001 (1985)

    ADS  MATH  Google Scholar 

  2. C A Kolassis, N O Santos and D Tsoubelis, Astrophys. J. 327, 755 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. W B Bonnor, A K G de Oliveira and N O Santos, Phys. Rep. 181, 269 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. A Di Prisco, L Herrera and M Esculpi, Class. Quant. Grav. 13, 1053 (1996)

    Article  ADS  MATH  Google Scholar 

  5. A Di Prisco, N Falcón, L Herrera, M Esculpi and N O Santos, Relativ. Gravit. 29, 1391 (1997)

    Article  ADS  Google Scholar 

  6. L Herrera and J Martínez, Relativ. Gravit. 30, 445 (1998)

    Article  ADS  MATH  Google Scholar 

  7. L Herrera and N O Santos, Mon. Not. R. Astron. Soc. 287, 161 (1997)

    ADS  Google Scholar 

  8. M Govender, S D Maharaj and R Maartens, Class. Quant. Grav. 15, 323 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M Govender, R Maartens and S D Maharaj, Mon. Not. R. Astron. Soc. 310, 557 (1999)

    Article  ADS  Google Scholar 

  10. M Govender, K S Govinder, S D Maharaj, R Sharma, S Mukherjee and T K Dey, Int. J. Mod. Phys. D12, 667 (2003)

    MathSciNet  ADS  Google Scholar 

  11. P C Vaidya and R Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  12. P C Vaidya, Proc. Ind. Acad. Sci. A33, 264 (1951)

    MathSciNet  ADS  Google Scholar 

  13. N O Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)

    ADS  Google Scholar 

  14. L Herrera, G Le Denmat, N O Santos and A Wang, Int. J. Mod. Phys. D13, 583 (2004)

    ADS  Google Scholar 

  15. L Herrera, A Di Prisco, E Fuenmayor and N O Santos, Int. J. Mod. Phys. D18, 129 (2009)

    ADS  Google Scholar 

  16. A Di Prisco, L Herrera, G Le Denmat, M A H MacCallum and N O Santos, Phys. Rev. D76, 064017 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D MAHARAJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MAHARAJ, S.D., GOVENDER, G. & GOVENDER, M. Temperature evolution during dissipative collapse. Pramana - J Phys 77, 469–476 (2011). https://doi.org/10.1007/s12043-011-0167-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0167-3

Keywords

PACS Nos

Navigation