Skip to main content
Log in

Stellar dynamics and black holes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Chandrasekhar’s most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar’s theory of gravitational encounters for motion in galactic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Padmanabhan, Curr. Sci. 70, 784 (1996)

    MathSciNet  Google Scholar 

  2. S Chandrasekhar, The Astrophys. J. 97, 255 (1943)

    Article  MathSciNet  ADS  Google Scholar 

  3. S Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. The integral for \(\mathcal{H}\) can be expressed exactly in terms of simple functions, although the expression is quite long. This is much easier to demonstrate nowadays than it was in the 1940s, with tools like Mathematica and Maple.

  5. S Chandrasekhar and J von Neumann, The Astrophys. J. 95, 489 (1942)

    Article  ADS  MATH  Google Scholar 

  6. R S Cohen, L Spitzer and P M Routly, Phys. Rev. 80, 230 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M L White, The Astrophys. J. 109, 159 (1949)

    Article  ADS  Google Scholar 

  8. S Chandrasekhar, Principles of stellar dynamics (University of Chicago Press, Chicago, 1942)

    Google Scholar 

  9. M Maoz, Mon. Not. R. Astron. Soc. 263, 75 (1993)

    ADS  Google Scholar 

  10. M Milosavljević and D Merritt, The Astrophys. J. 563, 34 (2001)

    Article  ADS  Google Scholar 

  11. P Côté et al, The Astrophys. J. 671, 1456 (2007)

    Article  ADS  Google Scholar 

  12. R M Buchholz, R Schödel and A Eckart, Astron. Astrophys. 499, 483 (2009)

    Article  ADS  Google Scholar 

  13. A W Graham, The Astrophys. J. Lett. 613, L33 (2004)

    Article  ADS  Google Scholar 

  14. If so, then one might expect f to be somewhat anisotropic.

  15. W A Mulder, Astron. Astrophys. 117, 9 (1983)

    ADS  MATH  Google Scholar 

  16. E P Lee, The Astrophys. J. 155, 687 (1969)

    Article  ADS  Google Scholar 

  17. S Chandrasekhar, The mathematical theory of black holes (Clarendon Press, New York, 1983)

    MATH  Google Scholar 

  18. C Hopman and T Alexander, The Astrophys. J. 645, 1152 (2006)

    Article  ADS  Google Scholar 

  19. K P Rauch and S Tremaine, New Astron. 1, 149 (1996)

    Article  ADS  Google Scholar 

  20. S Gillessen, F Eisenhauer, S Trippe, T Alexander, R Genzel, F Martins and T Ott, The Astrophys. J. 692, 1075 (2009)

    Article  ADS  Google Scholar 

  21. D Merritt, T Alexander, S Mikkola and C Will, Phys. Rev. D (in press); arXiv:1102.3180 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAVID MERRITT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MERRITT, D. Stellar dynamics and black holes. Pramana - J Phys 77, 135–146 (2011). https://doi.org/10.1007/s12043-011-0123-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0123-2

Keywords

PACS Nos

Navigation