Skip to main content
Log in

Iterative approach for the eigenvalue problems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

An approximation method based on the iterative technique is developed within the framework of linear delta expansion (LDE) technique for the eigenvalues and eigenfunctions of the one-dimensional and three-dimensional realistic physical problems. This technique allows us to obtain the coefficient in the perturbation series for the eigenfunctions and the eigenvalues directly by knowing the eigenfunctions and the eigenvalues of the unperturbed problems in quantum mechanics. Examples are presented to support this. Hence, the LDE technique can be used for nonperturbative as well as perturbative systems to find approximate solutions of eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ia B Zel’dovich, Sov. Phys. JETP 4, 942 (1957) V S Polikanov, Sov. Phys. JETP 25, 882 (1967) T Imbo and U Sukhatme, Am J. Phys. 52, 140 (1984)

  2. S M Ikhdair and R Sever, Int. J. Mod. Phys. C18, 1571 (2007)

    MathSciNet  ADS  Google Scholar 

  3. D P Dutta and S Mukherjee, J. Phys. A: Math. Gen. 15, 2368 (1982)

    ADS  Google Scholar 

  4. J Killingbeck, Phys. Lett. A65, 87(1978); Phys. Lett. A67, 13 (1978)

    Google Scholar 

  5. L Landay and E Lifshits, Quantum mechanics, non-relativistic theory, 3rd edn (Pergamon, 1991) p. 691

  6. C M Bender and L M A Bettencourt, Phys. Rev. Lett. 77, 4114 (1996) P Amore, A Aranda and A De Pace, J. Phys. A: Math. Gen. 37, 3515 (2004) P Amore, A Aranda, A De Pace and J A Lopez, Phys. Lett. A329, 451 (2004) I A Ivanov, Phys. Lett. A322, 194 (2004) G F Chen, J. Phys. A: Math. Gen. 34, 757 (2001)

  7. E Delabaere and D T Trinh, J. Phys. A: Math. Gen. 33, 8771 (2000) C M Bender, S Boettcher and P N Meisinger, J. Math. Phys. 40, 2201 (1999) O Mustafa and M Znojil, J. Phys. A: Math. Gen. 35, 8929 (2002) M Znojil, J. Phys. A: Math. Gen. 32, 7419 (1999)

  8. P Amore, A Aranda and A De Pace, J. Phys. A37, 3515 (2004)

    ADS  Google Scholar 

  9. A Okopinsa, Phys. Rev. D35, 1835 (1987) A Duncan and M Moshe, Phys. Lett. B215, 352 (1988)

  10. C Hsue and J L Chern, Phys. Rev. D29, 643 (1984)

    MathSciNet  ADS  Google Scholar 

  11. R A Bonham and L S Su, J. Chem. Phys. 45, 2827 (1996)

    Article  ADS  Google Scholar 

  12. M Reed and B Simon, Method of modern mathematical physics, IV analysis of operators (Academic, New York, 1978)

    Google Scholar 

  13. A D Dolgov and V S Popov, Zh. Eks. Teor. Fiz. 75, 2010 (1978)

    Google Scholar 

  14. E P Yukalova and V I Yukalov, J. Phys. A: Math. Gen. 20, 2011 (1993)

    Article  ADS  Google Scholar 

  15. P K Bera, J Datta, M M Panja and T Sil, Pramana – J. Phys. 69, 337 (2007)

    Article  ADS  Google Scholar 

  16. C M Bender and T T Wu, Phys. Rev. 184, 1231 (1969) N Bessis and G Bessis, J. Math. Phys. 38, 5483 (1997) M Znojil, J. Math. Phys. 38, 5087 (1997) A N Drozdov, J. Phys. A28, 445 (1995)

  17. I V Dobrovolska and R S Tutik, arXiv:quant-ph/0407182 (2004)

  18. D Bessis, E R Vrscay and C R Hand, J. Phys. A: Math. Gen. 20, 149 (1987) R N Chaudhuri, M Tater and M Znojil, J. Phys. A: Math. Gen. 20, 1401 (1987) R K Roychoudhury and Y P Varshni, J. Phys. A: Math. Gen. 21, 3025 (1988) S C Chhajlany, Phys. Lett. A173, 215 (1993) S H Dong, Int. J. Theor. Phys. 39, 1119 (2000) M Alberg and L Wilets, Phys. Lett. A286, 7 (2001)

    Google Scholar 

  19. S M Ikhdair and R Sever, Z. Phys. C56, 155 (1992); Z. Phys. C58, 153 (1993); Int. J. Mod. Phys. A18, 1215 (2003); Int. J. Mod. Phys. A19, 1771 (2004); Int. J. Mod. Phys. A20, 4035 (2005); Int. J. Mod. Phys. A20, 6509 (2005); Int. J. Mod. Phys. A21, 2191 (2006)

  20. N Saad, R L Hall and H Ciftci, J. Phys. A: Math. Gen. 39, 8477 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A Pathak and S Mandal, Phys. Lett. A298, 259 (2002) Y Meurice, J. Phys. A35, 8831 (2002)

  22. M P Blencowe and A P Korte, Phys. Rev. B56, 9422 (1997)

    ADS  Google Scholar 

  23. U F Jones, P Parkm and D Winder, Phys. Rev. D63, 125013 (2001)

    ADS  Google Scholar 

  24. J L Kneur, M B Pinto and R O Ramos, Phys. Rev. A68, 043615 (2003)

    ADS  Google Scholar 

  25. M Znojil, J. Math. Chem. 26, 159 (1999)

    Article  MathSciNet  Google Scholar 

  26. J H He, Int. J. Mod. Phys. B20, 1141 (2006) V Marinca, Arch. Mech. 58, 241 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J DATTA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DATTA, J., BERA, P.K. Iterative approach for the eigenvalue problems. Pramana - J Phys 76, 47–66 (2011). https://doi.org/10.1007/s12043-011-0118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0118-z

Keywords.

PACS Nos

Navigation