Skip to main content
Log in

Beyond the Chandrasekhar limit: Structure and formation of compact stars

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The concept of limiting mass, introduced by Chandrasekhar in case of white dwarfs, plays an important role in the formation and stability of compact objects such as neutron stars and black holes. Like white dwarfs, neutron stars have their own mass limit, and a compact configuration would progress from one family to the next, more dense one once a mass limit is crossed. The mass limit of neutron stars depends on the nature of nuclear forces at very high density, which has so far not been determined conclusively. This article reviews how observational determinations of the properties of neutron stars are starting to impose significant constraints on the state of matter at high density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  MATH  Google Scholar 

  2. E Stoner, Phil. Mag. 7, 63 (1930)

    Google Scholar 

  3. E Witten, Phys. Rev. D30, 272 (1984)

    MathSciNet  ADS  Google Scholar 

  4. S Chandrasekhar, An introduction to the study of stellar structure (Dover, New York, 1934)

    Google Scholar 

  5. J R Oppenheimer and G M Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  MATH  Google Scholar 

  6. C M Zhang et al, Astron. Asrophys. 527, 83 (2011)

    Article  ADS  Google Scholar 

  7. J M Weisberg, D J Nice and J H Taylor, Astrophys. J. 722, 1030 (2010)

    Article  ADS  Google Scholar 

  8. I H Stairs, S E Thorsett, J H Taylor and A Wolszczan, Astrophys. J. 581, 501 (2002)

    Article  ADS  Google Scholar 

  9. A G Lyne, New Astron. Rev. 54, 135 (2010)

    Article  ADS  Google Scholar 

  10. N D R Bhat, M Bailes and P W Verbiest, Phys. Rev. D77, 124017 (2008)

    ADS  Google Scholar 

  11. P C C Freire et al, Mon. Not. R. Astron. Soc. 412, 2763 (2011)

    Article  ADS  Google Scholar 

  12. B A Jacoby, B Hotan, M Bailes, S Ord and S R Kulkarni, Astrophys. J. 629, L113 (2005)

    Article  ADS  Google Scholar 

  13. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  14. J M Lattimer and M Prakash, Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  15. G B Cook, S L Shapiro and S A Teukolsky, Astrophys. J. 424, 823 (1994)

    Article  ADS  Google Scholar 

  16. J W T Hessels, S M Ransom, I H Stairs, P C C Freire, V M Kaspi and F Camilo, Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  17. S Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970)

    Article  ADS  Google Scholar 

  18. J L Friedman and B F Schutz, Astrophys. J. 222, 281 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  19. N Andersson, Astrophys. J. 502, 708 (1998)

    Article  ADS  Google Scholar 

  20. W Penninx, E Damen, J van Paradijs, J Tan and W H G Lewin, Astron. Astrophys. 208, 146 (1989)

    ADS  Google Scholar 

  21. F Özel, G Baym and T Güver, Phys. Rev. D82, 101301 (2010)

    ADS  Google Scholar 

  22. V Suleimanov, J Poutanen and K Werner, Astron. Astrophys. 527, A139 (2011)

    Article  ADS  Google Scholar 

  23. S Bogdanov, J E Grindlay and G B Rybicki, Astrophys. J. 689, 407 (2008)

    Article  ADS  Google Scholar 

  24. M van der Klis et al, Astrophys. J. 469, L1 (1996)

    Article  ADS  Google Scholar 

  25. S van Straaten, E C Ford, M van der Klis, M Méndez and P Kaaret, Astrophys. J. 540, 1049 (2000)

    Article  ADS  Google Scholar 

  26. E M Cackett et al, Astrophys. J. 674, 415 (2008)

    Article  ADS  Google Scholar 

  27. A L Watts and T E Strohmayer, Astrophys. J. 637, L117 (2006)

    Article  ADS  Google Scholar 

  28. T E Strohmayer and A L Watts, Astrophys. J. 653, 593 (2006)

    Article  ADS  Google Scholar 

  29. R C Duncan and C Thompson, Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  30. N Andersson et al, Gen. Relativ. Gravit. 43, 409 (2010)

    Article  ADS  Google Scholar 

  31. S Chandrasekhar, Zeit. Astrophys. 5, 321 (1932)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DIPANKAR BHATTACHARYA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BHATTACHARYA, D. Beyond the Chandrasekhar limit: Structure and formation of compact stars. Pramana - J Phys 77, 29–37 (2011). https://doi.org/10.1007/s12043-011-0109-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0109-0

Keywords

PACS Nos

Navigation