, Volume 76, Issue 6, pp 875–885 | Cite as

Dirac equation with spin symmetry for the modified Pöschl–Teller potential in D dimensions



We present solutions of the Dirac equation with spin symmetry for vector and scalar modified Pöschl–Teller potentials within the framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov–Uvarov method and the two-component spinor wave functions obtained are in terms of the Jacobi polynomials. It is found that there exist only positive energy states for bound states under spin symmetry, and the energy of a level with fixed value of n, increases with increase in dimension of space time and the potential range parameter α.


Dirac equation modified Pöschl–Teller potential spin symmetry Nikiforov–Uvarov method 


03.65.Ge 03.65.Pm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J N Ginocchio, Phys. Rev. C69, 034318 (2004)ADSGoogle Scholar
  2. [2]
    J N Ginocchio, Phys. Rev. Lett. 78, 436 (1997)ADSCrossRefGoogle Scholar
  3. [3]
    J N Ginocchio, Phys. Rep. 414(4–5), 165 (2005)MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P R Page, T Goldman and J N Ginocchio, Phys. Lett. 86, 204 (2001)CrossRefGoogle Scholar
  5. [5]
    A Bohr, I Hamarnoto and B R Motelson, Phys. Scr. 26, 267 (1982)ADSCrossRefGoogle Scholar
  6. [6]
    J Dudek, W Nazarewicz, Z Szymanski and G A Lender, Phys. Rev. Lett. 59, 1405 (1987)ADSCrossRefGoogle Scholar
  7. [7]
    A Arima, M Harvey and K Shimizu, Phys. Lett. B30, 517 (1969)ADSGoogle Scholar
  8. [8]
    K T Hecht and A Adler, Nucl. Phys. A137, 137 (1969)ADSGoogle Scholar
  9. [9]
    D Toltenier, C Bahri and J P Draayer, Nucl. Phys. A586, 53 (1995)ADSGoogle Scholar
  10. [10]
    C Berkdemir, Nucl. Phys. A770, 32 (2006)ADSGoogle Scholar
  11. [11]
    W C Qiang, R S Zhou and Y Gao, J. Phys. A: Math. Theor. 40, 1677 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    O Bayrak and I Boztosun, J. Phys. A: Math. Theor. 40, 11119 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    J Y Guo and Z Q Sheng, Phys. Lett. A338, 90 (2005)MathSciNetADSGoogle Scholar
  14. [14]
    A D Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A349, 87 (2006)MathSciNetADSGoogle Scholar
  15. [15]
    A Soylu, O Bayrak and I Boztosun, J. Phys. A: Math. Theor. 41, 065308 (2008)MathSciNetCrossRefGoogle Scholar
  16. [16]
    C S Jia, P Guo and X L Peng, J. Phys. A: Math. Theor. 39, 7737 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    G F Wei and S H Dong, Europhys. Lett. 87, 40004 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    Y Xu, H Su and C S Jia, J. Phys. A: Math. Theor. 41, 255302 (2008)ADSCrossRefGoogle Scholar
  19. [19]
    R Lisboa, M Malheiro, A S De Castro, P Alberto and M Fiolhais, Phys. Rev. C69, 4319 (2004)ADSGoogle Scholar
  20. [20]
    A S De Castro, P Alberto, R Lisboa and M Malheiro, Phys. Rev. C73, 054309 (2006)ADSGoogle Scholar
  21. [21]
    S M Al-jaber, Int. J. Theor. Phys. 37, 1289 (1998)MATHCrossRefGoogle Scholar
  22. [22]
    K J Oyewumi, F O Akinpelu and A D Agboola, Int. J. Theor. Phys. 47, 1039 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    D Agboola, Phys. Scr. 80, 065304 (2009)CrossRefGoogle Scholar
  24. [24]
    D Agboola, Chin. Phys. Lett. 27, 040301 (2010)CrossRefGoogle Scholar
  25. [25]
    D Agboola, Phys. Scr. 81, 067001 (2010)CrossRefGoogle Scholar
  26. [26]
    N Saad, Phys. Scr. 76, 623 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    S H Dong, J. Phys. A: Math. Theor. 36, 4977 (2003)ADSMATHCrossRefGoogle Scholar
  28. [28]
    C G Bollini and J J Giambiagi, Phys. Rev. D32, 3316 (1985)MathSciNetADSGoogle Scholar
  29. [29]
    R L Hall and M D Aliyu, Phys. Rev. A78, 052115 (2008)MathSciNetADSGoogle Scholar
  30. [30]
    Z Q Ma, S H Dong, X Y Gu, J Yu and M Lozada-Cassou, Int. J. Mod. Phys. 13, 597 (2004)ADSGoogle Scholar
  31. [31]
    C S Jia, P Guo, Y F Diao, L Z Yi and X J Xie, Eur. Phys. J. A34, 41 (2007)ADSGoogle Scholar
  32. [32]
    A F Nikiforov and V B Uvarov, Special functions of mathematical physics (Birkhauser, Bassel, 1988)MATHGoogle Scholar
  33. [33]
    R L Hall, Phys. Rev. 81, 052101 (2010)ADSGoogle Scholar
  34. [34]
    W Greiner, Relativistic quantum mechanics (Spinger-Verlag, Berlin, 1981)Google Scholar
  35. [35]
    A Erdelyi, Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. 1Google Scholar
  36. [36]
    X Y Gu, Z Q Ma and S H Dong, Int. J. Mod. Phys. E11, 335 (2002)ADSGoogle Scholar
  37. [37]
    J D Bjorken and S D Drell, Relativistic quantum mechanics (McGraw-Hill, New York, 1964)Google Scholar
  38. [38]
    C Fronsdal, Group theory and application to particle physics, Brandeis Summer Institute (Gordon and Breach, New York, 1962) Vol. 1Google Scholar
  39. [39]
    L D Landau and E M Lifshitz, Quantum Mechanics, 3rd edn (Pergamon, Oxford, 1965)MATHGoogle Scholar
  40. [40]
    J Zuniga, M Alacid, A Requena and A Bastida, Int. J. Quantum Chem. 57, 43 (1995)CrossRefGoogle Scholar
  41. [41]
    J I Diaz, J Negro, M L Nieto and O Rosas-Ortiz, J. Phys. A: Math. Gen. 32, 8447 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  42. [42]
    M Abramowitz and I A Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Dover, New York, 1970)Google Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Theoretical Physics Group, Department of MathematicsCovenant UniversityOgun StateNigeria

Personalised recommendations