Advertisement

Pramana

, Volume 77, Issue 4, pp 689–695 | Cite as

A simple model for calculating the bulk modulus of the mixed ionic crystal: NH4Cl1−x Br x

  • VASSILIKI KATSIKA-TSIGOURAKOU
Article

Abstract

The ammonium halides are an interesting systems because of their polymorphism and the possible internal rotation of the ammonium ion. The static properties of the mixed ionic crystal NH4Cl1 − x Br x have been recently investigated, using the three-body potential model (TDPM) by applying Vegard’s law. Here, by using a simple theoretical model, we estimate the bulk modulus of the alloys NH4Cl1 − x Br x , in terms of the bulk modulus of the end members alone. The calculated values are comparable to those deduced from the three-body potential model (TDPM) by applying Vegard’s law.

Keywords

Compressibility mixed crystal defect volume 

PACS

61.72.Bb 61.72.J- 62.20.D- 66.30.Fq 66.30.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D Rawat, N K Gaur, S Singh and A Gour, Pramana – J. Phys. 73, 1095 (2009)ADSCrossRefGoogle Scholar
  2. [2]
    W E Bleick, J. Chem. Phys. 2, 160 (1934)ADSCrossRefGoogle Scholar
  3. [3]
    W C Hamilton and J A Ibers, Bonding in solids (Benjamin, New York, 1968) p. 222Google Scholar
  4. [4]
    C S N Murthy and Y V G S Murti, J. Phys. Chem. Solids 31, 1485 (1970)ADSCrossRefGoogle Scholar
  5. [5]
    R K Singh and J P S Rana, Nuov o Cimento B57, 177 (1980)ADSGoogle Scholar
  6. [6]
    M F C Ladd and W H Lee, J. Inorg. Nucl. Chem. 13, 218 (1960)CrossRefGoogle Scholar
  7. [7]
    L Thakur and S K Sinha, Ind. J. Phys. A52, 521 (1978)Google Scholar
  8. [8]
    D D Shukla, D C Gupta and M N Sharma, Proc. Ind. Natl. Sci. Acad. A46, 525 (1980)Google Scholar
  9. [9]
    R K Singh, Phys. Rep. 85, 259 (1982)ADSCrossRefGoogle Scholar
  10. [10]
    C E Sims, G D Barrera and N L Allan, Phys. Rev . B57, 11164 (1998)ADSGoogle Scholar
  11. [11]
    S Froyen and M L Cohen, J. Phys. C19, 2623 (1983)ADSGoogle Scholar
  12. [12]
    R K Singh and S Singh, Phys. Rev . B38, 76 (1989)Google Scholar
  13. [13]
    V Katsika-Tsigourakou and A Vassilikou-Dova, J. Appl. Phys. 103, 083552 (2008)CrossRefGoogle Scholar
  14. [14]
    C M Padma and C K Mahadevan, Mater. Manuf. Processes 22, 362 (2007)CrossRefGoogle Scholar
  15. [15]
    C M Padma and C K Mahadevan, Physica B403, 1708 (2008)ADSGoogle Scholar
  16. [16]
    P Varotsos and K Alexopoulos, Thermodynamics of point defects and their relation with the bulk properties (North-Holland, Amsterdam, 1986)Google Scholar
  17. [17]
    P Varotsos, J. Phys. Chem. Solids 42, 405 (1981) See also P Varotsos, Phys. Status Solidi B99, K93 (1980) P Varotsos and K Alexopoulos, J. Phys. Chem. Solids 41, 1291 (1980)Google Scholar
  18. [18]
    P Varotsos and K Alexopoulos, Phys. Rev . B15, 4111 (1977); 15, 2348 (1977); 21, 4898 (1980); 24, 904 (1981); 30, 7305 (1984)Google Scholar
  19. [19]
    P Varotsos and W Ludwig, J. Phys. C: Solid State 11, L305 (1978) P Varotsos, W Ludwig and C Falter, J. Phys. C: Solid State 11, L311 (1978)Google Scholar
  20. [20]
    P Varotsos, W Ludwig and K Alexopoulos, Phys. Rev . B18, 2683 (1978) P Varotsos and K Alexopoulos, Phys. Status Solidi A47, K133 (1978)Google Scholar
  21. [21]
    P Varotsos and K Alexopoulos, J. Phys. Chem. Solids 39, 759 (1978); J. Phys. C: Solid State 12, L761 (1979); K Alexopoulos and P Varotsos, Phys. Rev . B24, 3606 (1981) See also P Varotsos Phys. Rev . B75, 172107 (2007)Google Scholar
  22. [22]
    P Varotsos, J. Appl. Phys. 101, 123503 (2007) P Varotsos and K Alexopoulos, Phys. Rev . B22, 3130 (1980) See also P Varotsos, Phys. Rev . B13, 938 (1976)Google Scholar
  23. [23]
    P A Varotsos, Phys. Status Solidi B90, 339 (1978); 100, K133 (1980); J. Phys. (France) Lett. 38, L455 (1977)Google Scholar
  24. [24]
    H Su, D O Welch and W Wong-Ng, Phys. Rev . B70, 054517 (2004)ADSGoogle Scholar
  25. [25]
    P Varotsos, N Sarlis, M Lazaridou and P Kapiris, J. Appl. Phys. 83, 60 (1998) See also P Varotsos et al, Phys. Rev . B59, 24 (1999)Google Scholar
  26. [26]
    P Varotsos and K Alexopoulos, Tectonophysics 110, 73 (1984); 110, 99 (1984); 136, 335 (1987) P Varotsos and M Lazaridou, ibid. 188, 321 (1991) P Varotsos, K Alexopoulos and M Lazaridou, ibid. 224, 1 (1993) P Varotsos et al, Nature (London) 322, 120 (1986) P Varotsos et al, Appl. Phys. Lett. 91, 064106 (2007)Google Scholar
  27. [27]
    P A Varotsos, N V Sarlis and E S Skordas, Phys. Rev . E66, 011902 (2002); 67, 021109 (2003); 68, 031106 (2003) See also P Varotsos et al, Phys. Rev . E71, 011110 (2005); 72, 041103 (2005); 73, 031114 (2006); 74, 021123 (2006) S Abe et al, Phys Rev . Lett. 94, 170601 (2005)Google Scholar
  28. [28]
    C S Smith and L S Cain, J. Phys. Chem. Solids 36, 205 (1975)ADSCrossRefGoogle Scholar
  29. [29]
    P A Varotsos, J. Phys. (France) Lett. 39, L79 (1978)Google Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of Solid State PhysicsFaculty of Physics, University of AthensZografosGreece

Personalised recommendations