Skip to main content
Log in

Propagation and oblique collision of electron-acoustic solitons in two-electron-populated quantum plasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Oblique interaction of small- but finite-amplitude KdV-type electron-acoustic solitary excitations is examined in an unmagnetized two-electron-populated degenerate quantum electron–ion plasma in the framework of quantum hydrodynamics model using the extended Poincaré–Lighthill–Kuo (PLK) perturbation method. Critical plasma parameter is found to distinguish the types of solitons and their interaction phase-shifts. It is shown that, depending on the critical quantum diffraction parameter H cr, both compressive and rarefactive solitary excitations may exist in this plasma and their collision phase-shifts can be either positive or negative for the whole range of collision angles 0 < θ < π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B Bezzerides, D W Forslund and E L Lindman, Phys. Fluids 21, 2179 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. F S Mozer, C A Cattell, M Temerin, R B Torbert, S Von Glinski, M Woldorff and J Wygant, J. Geophys. Res. 84, 5875 (1979)

    Article  ADS  Google Scholar 

  3. M P Dell, I M A Geldhill and M A Hellberg, Z. Naturforsch. A: Phys. Sci. 42, 1175 (1987).

    Google Scholar 

  4. S P Gary and R L Tokar, Phys. Fluids 28, 2439 (1985)

    Article  ADS  Google Scholar 

  5. N Dubouloz, R Pottelette, M Malingre and R A Treumann, Geophys. Res. Lett. 18, 155 (1991)

    Article  ADS  Google Scholar 

  6. G S Lakhina, A P Kakad, S V Singh and F Verheest, Phys. Plasmas 15, 062903 (2008)

    Article  Google Scholar 

  7. B N Goswami and B Buti, Phys. Lett. A57, 149 (1976)

    ADS  Google Scholar 

  8. A Esfandyari-Kalejahi, I Kourakis and M Akbari-Moghanjoughi, J. Plasma Phys. doi:10.1017/S00223778100000242010 (2010)

    Google Scholar 

  9. O P Sah and J Manta, Phys. Plasmas 14, 082309 (2007)

    Article  Google Scholar 

  10. Hai Jun Ren, Jintao Cao and Zhengwei Wu, Phys. Plasmas 15, 102108 (2008)

    Article  ADS  Google Scholar 

  11. A P Misra, P K Shukla and C Bhowmik, Phys. Plasmas 16, 032304 (2009)

    Article  Google Scholar 

  12. Om Prakash Sah, Phys. Plasmas 16, 012105 (2009)

    Article  Google Scholar 

  13. R L Tokar and S P Gary, Geophys. Res. Lett. 11, 1180, doi:10.1029GL011i012, 01180 (1984)

    Article  ADS  Google Scholar 

  14. F Haas, L G Garcia, J Goedert and G Manfredi, Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  15. A P Misra, Phys. Plasmas 16, 033702 (2009)

    Article  Google Scholar 

  16. W Masood, M Siddiq, Shahida Nargis and Arshad M Mirza, Phys. Plasmas 16, 013705 (2009)

    Article  ADS  Google Scholar 

  17. R Sabry, S K El-Labany and P K Shukla, Phys. Plasmas 15, 122310 (2008)

    Google Scholar 

  18. A P Misra and S Samanta, Phys. Plasmas 15, 122307 (2008)

    Article  ADS  Google Scholar 

  19. H Haug and S W Koch, Quantum theory of the optical and electronic properties of semiconductors (World Scientific, London, 2004)

  20. C L Gardner and C Ringhofer, Phys. Rev. E53, 157 (1996)

    ADS  Google Scholar 

  21. M Bonitz, D Semkat, A Filinov, V Golubnychyi, D Kremp, D O Gericke, M S Murillo, V Filinov, V Fortov and W Hoyer, J. Phys. A36, 5921 (2003)

    ADS  Google Scholar 

  22. D Kremp, Th Bornath, M Bonitz and M Shlanges, Phys. Rev. E60, 4725 (1999)

    ADS  Google Scholar 

  23. A V Andreev, JETP Lett. 72, 238 (2000)

    Article  ADS  Google Scholar 

  24. R Bingham, J T Mendona and P K Shukla, Plasma Phys. Controlled Fusion 46, R1 (2004)

    Article  ADS  Google Scholar 

  25. S Mahmood and W Masood, Phys. Plasmas 15, 122302 (2008)

    Article  ADS  Google Scholar 

  26. W Masood and A Mushtaq, Phys. Plasmas 15, 022306 (2008)

    Article  Google Scholar 

  27. N J Zabusky and M D Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  MATH  Google Scholar 

  28. J N Han, S C Li, X X Yang and W S Duan, Eur. Phys. J. D47, 197 (2008)

    ADS  Google Scholar 

  29. Jiu-Ning Han, Xiao-Xia Yang, Duo-Xiang Tian and Wen-Shan Duan, Phys. Lett. A372, 4817 (2008)

    ADS  Google Scholar 

  30. S K El-Labany, E F El-Shamy, W F El-Taibany and P K Shukla, Phys. Lett. A374, 960 (2010)

    ADS  Google Scholar 

  31. C S Gardner, J M Greener, M D Kruskal and R M Mirie, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  MATH  Google Scholar 

  32. Gui-zhen Liang, Jiu-ning Han, Mai-mai Lin, Ju-na Wei and Wen-shan Duan, Phys. Plasmas 16, 073705 (2009)

    Article  Google Scholar 

  33. Han Jiu-Ning, Duan Wen-Shan, Tian Duo-Xiang and Liang Gui-Zhen, Chin. Phys. Lett. 25, 4061 (2008)

    Article  ADS  Google Scholar 

  34. M Akbari-Moghanjoughi, Phys. Lett. A374 1721 (2010)

    ADS  Google Scholar 

  35. Xin Jiang, Xiu-yun Gao, Sheng-chang Li and Wen-shan Duan, Appl. Math. Comp. 214, 60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiu-ning Han, Sheng-lin Du and Wen-shan Duan, Phys. Plasmas 15, 112104 (2008)

    Article  ADS  Google Scholar 

  37. P K Shukla and B Eliasson, Phys. Usp. 53, 51 (2010)

    Article  ADS  Google Scholar 

  38. L Landau and E M Lifshitz, Statistical physics (Oxford University Press, Oxford, 1980)

    Google Scholar 

  39. A Jeffery and T Kawahawa, Asymptotic method in nonlinear wave theory (Pitman, London, 1982)

    Google Scholar 

  40. Masayuki Oikawa and Nobuo Yajima, Phys. Soc. Jpn. 34, 1093 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  41. Tosiya Taniuti and Chau-Chin Wei, Phys. Soc. Jpn. 24, 941 (1968)

    Article  ADS  Google Scholar 

  42. Gui-zhen Liang, Jiu-ning Han, Mai-mai Lin, Ju-na Wei andWen-shan Duan, Phys. Plasmas 16 073705 (2009)

  43. M Akbari-Moghanjoughi, Phys. Plasmas 17, 082304 (2010)

    Article  Google Scholar 

  44. Nobumasa Sugimoto and Tsunehiko Kakutani, J. Phys. Soc. Jpn. 43, 1469 (1977)

    Article  ADS  Google Scholar 

  45. C H Su and R M Mirie, J. Fluid Mech. 98, 509 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. W M Moslem, P K Shukla, S Ali and R Schlickeiser, Phys. Plasmas 14, 042107 (2007)

    Article  Google Scholar 

  47. M Akbari-Moghanjoughi, Phys. Plasmas 17, 052302 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M AKBARI-MOGHANJOUGHI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AKBARI-MOGHANJOUGHI, M., AHMADZADEH-KHOSROSHAHI, N. Propagation and oblique collision of electron-acoustic solitons in two-electron-populated quantum plasmas. Pramana - J Phys 77, 369–382 (2011). https://doi.org/10.1007/s12043-011-0093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0093-4

Keywords

PACS Nos

Navigation