Skip to main content
Log in

The effect of C atom concentration on the electronic properties of boron carbonitride alloy nanotube in zig-zag form

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Electronic properties of single-walled boron nitride nanotube in zig-zag form are numerically investigated by replacing B atoms with C atoms. Using a tight-binding Hamiltonian, the methods based on Green’s function theory, Landauer formalism and Dyson equation, the electronic density of states and electronic conductance in boron nitride nanotube and boron carbonitride nanotube are calculated. Our calculations indicate that in a boron nitride nanotube, the localized states associated with C impurities appear as the concentration of C atoms increases. The boron carbonitride nanotube thus behaves like a semiconductor. Also, by increasing the C atom concentration, the voltage in the first step on the IV characteristics decreases, whereas the corresponding current increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Harigaya, Physica E29, 628 (2005)

    ADS  Google Scholar 

  2. R Saito, G Dresselhaus and M S Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  3. J Otsuka, K Hirose and T Ono, Phys. Rev . B78, 035426 (2008)

    ADS  Google Scholar 

  4. S Roy et al, Nanolett. 8, 26 (2008)

    Article  ADS  Google Scholar 

  5. C T White, D H Robertson and J W Mintmire, Phys. Rev . B47, 5485 (1993)

    ADS  Google Scholar 

  6. J W C Wilder, L C Venema, A G Rinzler, R E Smalley and C Dekker, Nature 391, 59 (1998)

    Article  ADS  Google Scholar 

  7. J Yu, X D Bai, J Ahn, S F Yoon and E G Wang, Chem. Phys. Lett. 323, 529 (2000) and references therein

    Article  ADS  Google Scholar 

  8. G Y Guo, K C Chu, D Wang and C Duan, Phys. Rev . B69, 205416 (2004)

    ADS  Google Scholar 

  9. F Piazza et al, Diamond Relat. Mater. 14, 965 (2005)

    Article  ADS  Google Scholar 

  10. O Stephan et al, Science 266, 1683 (1994)

    Article  ADS  Google Scholar 

  11. Z Weng-Sieh et al, Phys. Rev . B51, 11229 (1995)

    ADS  Google Scholar 

  12. P Redlich, J Loeffler, P M Ajayan, J Bill, F Aldinger and M Ruhle, Chem. Phys. Lett. 260, 465 (1996)

    Article  ADS  Google Scholar 

  13. K Suenaga, C Colliex, N Demoncy, A Loiseau, H Pascard and F Willaime, Science 278, 653 (1997)

    Article  ADS  Google Scholar 

  14. M Terrones et al, Chem. Phys. Lett. 257, 576 (1996)

    Article  ADS  Google Scholar 

  15. R Sen et al, Chem. Phys. Lett. 287, 671 (1998)

    Article  ADS  Google Scholar 

  16. Y Zhang, H Gu, K Suenaga and S Iijima, Chem. Phys. Lett. 279, 264 (1997)

    Article  ADS  Google Scholar 

  17. A Rubio, J L Corkill and M Cohen, Phys. Rev . B49, 5081 (1994)

    ADS  Google Scholar 

  18. M S Si and D S Xue, Europhys. Lett. 76, 664 (2006)

    Article  ADS  Google Scholar 

  19. M Terauchi, M Tanaka, K Suzuki, A Ogino and K Kimura, Chem. Phys. Lett. 324, 359 (2000)

    Article  ADS  Google Scholar 

  20. R Z Ma, Y Bando, T Sato and K Kurashima, Chem. Mater. 13, 2965 (2001)

    Article  Google Scholar 

  21. R Z Ma, Y Bando and T Sato, Chem. Phys. Lett. 337, 61 (2001)

    Article  ADS  Google Scholar 

  22. B G Demczyk, J Cumings, A Zettl and R O Ritchie, Appl. Phys. Lett. 78, 2772 (2001)

    Article  ADS  Google Scholar 

  23. R S Lee et al, Phys. Rev . B64, 1405 (2001)

    ADS  Google Scholar 

  24. M Buttiker, Y Imry, R Landauer and S Pinhas, Phys. Rev . B31, 6207 (1985)

    ADS  Google Scholar 

  25. V Mujica, M Kemp and M A Ratner, J. Chem. Phys. 101, 6849 (1994)

    Article  ADS  Google Scholar 

  26. B Larade and A M Bratkovsky, Phys. Rev . B68, 235305 (2003)

    ADS  Google Scholar 

  27. Y Calev, H Cohen, G Cuniberti, A Nitzan and D Porath, Israel J. Chem. 44, 133 (2004)

    Article  Google Scholar 

  28. P A Khomyakov, G Brocks, V Karpan, M Zwierzycki and P J Kelly, Phys. Rev . B72, 035450 (2005)

    ADS  Google Scholar 

  29. W Fa, J Chen, H Liu and J Dong, Phys. Rev . B69, 235413 (2004)

    ADS  Google Scholar 

  30. X Yang and J Dong, Phys. Lett. A330, 238 (2004)

    ADS  Google Scholar 

  31. T Yoshioka, H Suzuura and T Ando, J. Phys. Soc. Jpn 72, 2656 (2003)

    Article  ADS  Google Scholar 

  32. C Delerue and M Lannoo, Nanostructures – theory and modeling (Springer-Verlag, Berlin, 2004)

    Google Scholar 

  33. D Golberg, Y Bando, C Tang and C Zhi, Adv . Mater. 19, 2413 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H MILANI MOGHADDAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MOGHADDAM, H.M. The effect of C atom concentration on the electronic properties of boron carbonitride alloy nanotube in zig-zag form. Pramana - J Phys 76, 965–972 (2011). https://doi.org/10.1007/s12043-011-0069-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0069-4

Keywords

PACS Nos

Navigation