Skip to main content
Log in

New applications of the good old wavelength-dispersive X-ray fluorescence

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

Wavelength-dispersive X-ray fluorescence can be characterized by its advantages and drawbacks. Unbeaten spectral resolution in a range below 5 keV, good operational stability, excellent ability of making averaged analysis, and good presentation of peak shape which gives the basis for the chemical speciation are the advantages. Among the drawbacks, the following are important: system with sequential analysis of particular elements, low output of energy supplied to the device, and great cost of instrument which can be amortized only in routine operations. In routine geological and environmental analyses, the WD-XRF performs better than other simpler instrumental or wet techniques. WD-XRF is continuously improved, by applying new multilayer interference mirrors (MIM) for detection and quantification of very light elements. Bad spectral resolution of MIM noted earlier is now improved by tailoring their shape to the shape of gratings. The progress in the long wavelength spectral region joined with efficient and precise wavelength resolution systems enables the application of WD-XRF for speciation analysis. In another effort, XRF spectrometry is treated as a tool for obtaining quantitative basis for the judgement on Linnaean systematic classification of plants and opens the field to a new discipline – quantitative biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J A Helsen and A Kuczumow, Handbook on X-ray spectrometry: Methods and techniques edited by A Markowicz and R Van Grieken, 2nd edn (Marcel Dekker, New York, 2001) p. 95

  2. R Jenkins, in: Encyclopedia of analytical chemistry (Wiley, 2006) p. 21

  3. J Sherman, Spectrochim. Acta 7, 283 (1955)

    ADS  Google Scholar 

  4. J Sherman, Spectrochim. Acta 15, 466 (1959)

    Article  ADS  Google Scholar 

  5. T Shiraiwa and N Fujino, Adv. X-Ray Anal. 11, 63 (1968)

    Google Scholar 

  6. T Shiraiwa and N Fujino, X-Ray Spectrom. 3, 64 (1974)

    Article  Google Scholar 

  7. R M Rousseau, Spectrochim. Acta B59, 1491 (2004)

    ADS  Google Scholar 

  8. J Philibert, in: X-ray optics and X-ray microanalysis edited by H Pattee, V Cosslett and A Engström (Academic Press, New York, 1963) p. 379

  9. J Kawai and H Ishii, Spectrochim. Acta B60, 1586 (2005)

    ADS  Google Scholar 

  10. T Tanigaki and J Kawai, X-Ray Spectrom. 36, 321 (2007)

    Article  Google Scholar 

  11. J Trincavelli and G Castellano, Spectrochim. Acta B63, 1 (2008)

    ADS  Google Scholar 

  12. J S Scofield, Phys. Rev. A9, 1041 (1971)

    ADS  Google Scholar 

  13. J S Scofield, Phys. Rev. A10, 1507 (1971)

    ADS  Google Scholar 

  14. M Karimi, N Amiri and A A T Shabani, X-Ray Spectrom. 38, 234 (2009)

    Article  Google Scholar 

  15. M Kataoka, H Kohno, E Furusawa and M Mantler, X-Ray Spectrom. 36, 221 (2007)

    Article  Google Scholar 

  16. M Fialin, H Remy, J-M Andre, J P Chavineau, F Rousseaux, M F Ravet, D Decanini and E Cambril, X-Ray Spectrom. 34, 203 (2005)

    Article  Google Scholar 

  17. J-M Andre, P Jonnard, C Michaelsen, J Wiesmann, F Bridou, M-F Ravet, A Jerome, F Delmotte and E O Filatova, X-Ray Spectrom. 34, 203 (2005)

    Article  Google Scholar 

  18. J-M Andre, P Jonnard and R Benbalagh, X-Ray Spectrom. 36, 62 (2007)

    Article  Google Scholar 

  19. P Jonnard, K Le Guen and J-M Andre, X-Ray Spectrom. 38, 117 (2009)

    Article  Google Scholar 

  20. P Jonnard, H Maury and J-M Andre, X-Ray Spectrom. 36, 72 (2007)

    Article  Google Scholar 

  21. C Hombourger, P Jonnard, J-M Andre and J-P Chavineau, X-Ray Spectrom. 28, 163 (1999)

    Article  Google Scholar 

  22. R Benbalagh, J-M Andre, R Barchewitz, M F Ravet, A Raynal, F Delmotte, F Bridou, G Julie, A Bosseboeuf, R Laval and P h Troussel, Nucl. Instrum. Methods A458, 650 (2001)

    ADS  Google Scholar 

  23. R Benbalagh, J-M Andre, R Barchewitz, P Jonnard, G Julie, L Mollard, G Rolland, C h Remond, P h Troussel, R Marmoret and E O Filatova, Nucl. Instrum. Methods A541, 590 (2005)

    ADS  Google Scholar 

  24. M Koike, M Ishino, T Imazono, K Sano, H Sasai, M Hatayama, H Takenaka, O A Heimann and E M Gullikson, Spectrochim. Acta B64, 756 (2009)

    ADS  Google Scholar 

  25. XOS Inc. (Ed.), Better analysis count – Wavelength-dispersive X-ray fluorescence and monochromatic wavelength-dispersive X-ray fluorescence (XOS Inc., 2007)

  26. R Sitko, B Zawisza and E Malicka, Spectrochim. Acta B63, 1303 (2008)

    ADS  Google Scholar 

  27. Y Mokuno, Y Horino, A Chayahara, A Kinomura, N Tsubouchi, K Fujii, M Terasawa and T Sekioka, Nucl. Instrum. Methods B 136–138, 369 (1998)

    Google Scholar 

  28. A Kuczumow and M Szewczak, X-Ray Spectrom. 15, 87 (1986)

    Article  Google Scholar 

  29. T L Alexandre and M I M S Buenos, X-Ray Spectrom. 35, 257 (2006)

    Article  Google Scholar 

  30. M I M S Bueno, M T P O Castro, A M de Souza, E B S de Oliveira and A P Teixeira, Chemom. Intell. Lab. Syst. 78, 96 (2005)

    Article  Google Scholar 

  31. J L Reveal, Phytologia 74, 193 (1993)

    Google Scholar 

  32. F M Verdi, E R Pereira-Filho and M I M S Buenos, Microchim. Acta 150, 131 (2005)

    Article  Google Scholar 

  33. G G Bortoleto, L C M Pataca and M I M S Buenos, Anal. Chim. Acta 539, 283 (2005)

    Article  Google Scholar 

  34. F-Y Yueh, H Zheng, J P Singh and S Burgess, Spectrochim. Acta B64, 1059 (2009)

    ADS  Google Scholar 

  35. S Rehse, J Diedrich and S Palchaudhuri, Spectrochim. Acta B62, 1169 (2007)

    ADS  Google Scholar 

  36. M L Carvalho, T Magalhaes, M Becker and A von Bohlen, Spectrochim. Acta B62, 1004 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANDRZEJ KUCZUMOW.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUCZUMOW, A., WOLSKI, P. New applications of the good old wavelength-dispersive X-ray fluorescence. Pramana - J Phys 76, 213–221 (2011). https://doi.org/10.1007/s12043-011-0042-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0042-2

Keywords.

PACS Nos

Navigation