Skip to main content
Log in

In vivo applications of X-ray fluorescence in human subjects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

X-ray fluorescence has been used to measure several elements noninvasively within living human subjects. Some description is given of the constraints imposed by this rather unusual form of analysis together with a brief listing indicating the range of elements for which such analyses have been developed. Measurements of two elements are then presented in more detail. Lead is measured in bone and has become a well-established tool in continuing research into the long term effects of lead. Strontium is also measured in bone and, although presently not in widespread use, offers the potential for essential information in the study of the reported benefits of strontium supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P B Hoffer, W B Jones, R B Crawford, R Beck and A Gottschalk, Radiology 90, 342 (1968)

    Google Scholar 

  2. M Hansson, G Berg and M Isaksson, X-Ray Spectrom. 37, 37 (2008)

    Article  Google Scholar 

  3. L Ahlgren, K Lidén, S Mattsson and S Tejning, Scand. J. Work, Environ. & Health 2, 82 (1976)

    Article  Google Scholar 

  4. J O Christofferrsson and S Mattsson, Phys. Med. Biol. 28, 1135 (1983)

    Article  Google Scholar 

  5. R Jonson, S Mattsson and B Unsgaard, Phys. Med. Biol. 33, 847 (1988)

    Article  Google Scholar 

  6. J Scott and S Lillicrap, Phys. Med. Biol. 33, 859 (1988)

    Article  Google Scholar 

  7. J Borjesson, L Barregard, G Sallsten, A Schütz, R Jonson, M Alpsten and S Mattsson, Phys. Med. Biol. 40, 413 (1995)

    Article  Google Scholar 

  8. J M O’Meara, D R Chettle, F E McNeill and C E Webber, Phys. Med. Biol. 42, 1109 (1997)

    Article  Google Scholar 

  9. M J Farquharson and D A Bradley, Phys. Med. Biol. 44, 955 (1999)

    Article  Google Scholar 

  10. S A Graham and J M O’Meara, Phys. Med. Biol. 49, N259 (2004)

    Article  Google Scholar 

  11. A Pejović-Milić, I M Stronach, J Gyorffey, C E Webber and D R Chettle, Med. Phys. 31, 528 (2004)

    Article  Google Scholar 

  12. R C N Studinski, F E McNeill, D R Chettle and J M O’Meara, Phys. Med. Biol. 50, 521 (2005)

    Article  Google Scholar 

  13. D E B Fleming and M R Gherase, Phys. Med. Biol. 52, N459 (2007)

    Article  Google Scholar 

  14. P Bloch, G Garavaglia, G Mitchell and I Shapiro, Phys. Med. Biol. 22, 56 (1977)

    Article  Google Scholar 

  15. J Price, H Baddeley, J A Kenardy, B J Thomas and B W Thomas, Br. J. Radiol. 57, 29 (1984)

    Article  Google Scholar 

  16. E E Laird, D R Chettle and M C Scott, Nucl. Instrum. Methods 193, 377 (1982)

    Article  ADS  Google Scholar 

  17. L J Somervaille, D R Chettle and M C Scott, Phys. Med. Biol. 30, 929 (1985)

    Article  Google Scholar 

  18. L Wielopolski, D N Slatkin, D Vartsky, K J Ellis and S H Cohn, IEEE Trans. Nucl. Sci. 28, 114 (1981)

    Article  ADS  Google Scholar 

  19. L Wielopolski, J F Rosen, D N Slatkin, D Vartsky, K J Ellis and S H Cohn, Med. Phys. 10, 248 (1983)

    Article  Google Scholar 

  20. C L Gordon, D R Chettle and C E Webber, Br. J. Ind. Med. 50, 637 (1993)

    Google Scholar 

  21. A C Todd, F E McNeill and B A Fowler, Environ. Res. 59, 326 (1992)

    Article  Google Scholar 

  22. H Nie, D R Chettle, L Luo and J M O’Meara, Phys. Med. Biol. 51, 351 (2006)

    Article  Google Scholar 

  23. N Ahmed and D E B Fleming, Nucl. Instrum. Methods B263, 32 (2007)

    ADS  Google Scholar 

  24. E van Wijngaarden, J R Campbell and D A Cory-Slechta, Neurotoxicology 30, 572 (2009)

    Article  Google Scholar 

  25. A C Todd, F E McNeill, J E Palethorpe, D E Peach, D R Chettle, M J Tobin, S J Strosko and J C Rosen, Environ. Res. 57, 117 (1992)

    Article  Google Scholar 

  26. H Nie, D Chettle, L Luo and J O’Meara, Nucl. Instrum. Methods B263, 225 (2007)

    ADS  Google Scholar 

  27. L J Somervaille, D R Chettle, M C Scott, D R Tennant, M J McKiernan, A Skilbeck and W N Trethowan, Br. J. Ind. Med. 45, 174 (1988)

    Google Scholar 

  28. H Hu, L Pepper and R Goldman, Am. J. Ind. Med. 20, 723 (1991)

    Article  Google Scholar 

  29. R Armstrong, D R Chettle, M C Scott, L J Somervaille and M Pendlington, Br. J. Ind. Med. 49, 14 (1992)

    Google Scholar 

  30. J Erkkilä, R Armstrong, V Riihimäki, D R Chettle, A Paakkari, M Scott, L Somervaille, J Starck, B Kock and A Aitio, Br. J. Ind. Med. 49, 631 (1992)

    Google Scholar 

  31. L Gerhardsson, R Attewell, D R Chettle, V Englyst, N-G Lundström, G F Nordberg, H Nyhlin, M C Scott and A C Todd, Arch. Environ. Health 48, 147 (1993)

    Article  Google Scholar 

  32. K M Cake, D R Chettle, C E Webber, C L Gordon, R J Bowins, R H McNutt and C Vaillancourt, Adv. X-Ray Anal. 38, 601 (1995)

    Article  Google Scholar 

  33. D E B Fleming, D Boulay, N S Richard, J-P Robin, C Gordon, C E Webber and D R Chettle, Environ. Health Perspect. 105, 224 (1997)

    Article  Google Scholar 

  34. B S Schwartz and H Hu, Environ. Health Perspect. 115, 451 (2007)

    Article  Google Scholar 

  35. M L Bleecker, F E McNeill, K N Lindgren, L V Masten and D P Ford, Toxicol. Lett. 80, 173 (1995)

    Article  Google Scholar 

  36. M Popovic, F E McNeill, D R Chettle, C E Webber, C V Lee and W E Kaye, Environ. Health Perspect. 113, 478 (2005)

    Article  Google Scholar 

  37. D R Chettle, X-Ray Spectrom. 34, 446 (2005)

    Article  Google Scholar 

  38. N Healey, D R Chettle, F E McNeill and D E B Fleming, Environ. Health Perspect. 116, A109 (2008)

    Article  Google Scholar 

  39. B S Schwartz, H Hu, S J Rothenberg and A C Todd, Environ. Health Perspect. 116, A109 (2008)

    Article  Google Scholar 

  40. J A A Brito, F E McNeill, I Stronach, C E Webber, S Wells, N Richard and D R Chettle, J. Environ. Monit. 3, 343 (2001)

    Article  Google Scholar 

  41. M Cohen-Solal, Nephrol. Dial. Transplant. 17(Suppl 2), 30 (2002)

    Article  Google Scholar 

  42. J Y Reginster, E Seeman, M C De Vernejoul, S Aadmi, J Compston, C Phenekos, J P Devogelaer, M D Curiel, A Sawicki, S Goemaere, O H Sorenson, D Felsenberg and J P Meunier, J. Clin. Endocrinol. Metab. 90, 2816 (2005)

    Article  Google Scholar 

  43. R E Snyder and D C Secord, Phys. Med. Biol. 27, 515 (1982)

    Article  Google Scholar 

  44. L Wielopolski, D Vartsky, S Yasumura and S H Cohn, Adv. X-Ray Anal. 26, 415 (1983)

    Google Scholar 

  45. M Zamburlini, A Pejović-Milić, D R Chettle, C Webber and J Gyorffy, Phys. Med. Biol. 52, 2107 (2007)

    Article  Google Scholar 

  46. C M Heirwegh, D R Chettle and A Pejović-Milić, Phys. Med. Biol. 55, 1083 (2010)

    Article  Google Scholar 

  47. H Moise, A Pejović-Milić and D Chettle, Canadian Association of Physicists Annual Congress (University of Toronto, June, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R CHETTLE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHETTLE, D.R. In vivo applications of X-ray fluorescence in human subjects. Pramana - J Phys 76, 249–259 (2011). https://doi.org/10.1007/s12043-011-0038-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0038-y

Keywords.

PACS Nos

Navigation