Skip to main content
Log in

Variation of interface trap level charge density within the bandgap of 4H-SiC with varying oxide thickness

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

Interfacial characteristics of metal oxide-silicon carbide (MOSiC) structure with different thickness of SiO2, thermally grown in steam ambient on Si-face of 4H-SiC (0 0 0 1) substrate were investigated. Variations in interface trapped level density (D it) was systematically studied employing high-low (H-L) frequency C–V method. It was found that the distribution of D it within the bandgap of 4H-SiC varied with oxide thickness. The calculated D it value near the midgap of 4H-SiC remained almost stable for all oxide thicknesses in the range of 109–1010 cm−2 eV−1. The D it near the conduction band edge had been found to be of the order of 1011 cm−2 eV−1 for thicker oxides and for thinner oxides D it was found to be the range of 1010 cm−2 eV−1. The process had direct relevance in the fabrication of MOS-based device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M N Yoder, IEEE Trans. Electron. Devices 43, 1633 (1996)

    Article  ADS  Google Scholar 

  2. Samuele Porro, Rafal R Ciechonski, Mikael Syväjärvi and Rositza Yakimova, Phys. Status Solidi A202(13), 2508 (2005)

    ADS  Google Scholar 

  3. Gary L Harris, Properties of silicon carbide, United Kingdom INSPEC, The Institution of Electrical Engineers, London (1995)

  4. Zhe Chuan Feng and Jian H Zhao, Silicon carbide materials, processing and devices (Taylor & Francis, New York, 2004)

    Google Scholar 

  5. Michael Shur, Sergey Rumyantsev and Michael Levinshtein, Silicon carbide materials and devices (World Scientific Publishing Co., Ltd. Singapore, 2006) Vol. 1

    Google Scholar 

  6. Hiroshi Yano, Fumito Katafuchi, Tshnenobu Kimoto and Hiroyuki Matsunami, IEEE Trans. Electron Devices 46(3), 504 (1999)

    Article  ADS  Google Scholar 

  7. Hirofumi Kurimoto, Kaoru Shibata, Chiharu Kimura, Hidemitsu Aoki and Takashi Sugino, Appl. Surf. Sci. 253, 2416 (2006)

    Article  ADS  Google Scholar 

  8. Kuan Yew Cheong, Sima Dimitrijev, Jisheng Han and H Barry Harrison, J. Appl. Phys. 93(9), 5682 (2003)

    Article  ADS  Google Scholar 

  9. T E Rudenko, H O Olafsson, E O Sveinbjornsson, I P Osiyuk and I P Tyagulski, Microelectron. Eng. 72, 213 (2004)

    Article  Google Scholar 

  10. N S Saks, M G Ancona and R W Rendell, Appl. Phys. Lett. 80, 3219 (2002)

    Article  ADS  Google Scholar 

  11. Hiroshi Yano, Taichi Hirao, Tsunenobu Kimoto, Hiroyuki Matsunami and Hiromu Shiomi, Appl. Phys. Lett. 81(25), 4772 (2002)

    Article  ADS  Google Scholar 

  12. S Dhar, L C Feldman, S Wang, T Isaacs-Smith and J R Williams, J. Appl. Phys. 98, 014902 (2005)

    Article  ADS  Google Scholar 

  13. Sanjeev K Gupta, A Azam and J Akhtar, Pramana – J Phys. 74(2), 325 (2010)

    ADS  Google Scholar 

  14. D K Schroder, Semiconductor material and device characterization (John Wiley & Sons, Inc., New York, 1990)

    Google Scholar 

  15. L M Terman, Solid-State Electron. 5, 285 (1962)

    Article  ADS  Google Scholar 

  16. C N Berglund, IEEE Trans. Electron Devices 31(10), 701 (1966)

    Article  Google Scholar 

  17. H F Li, S Dimitrijev, D Sweatman and H B Harrison, J. Electron. Mater. 29(8), 1027 (2000)

    Article  ADS  Google Scholar 

  18. I C Vickridge, I Trimaille, J J Ganem, S Rigo, C Radtke, I J R Baomvol and F C Stedile, Phys. Rev. Lett. 89(25), 256102 (2002)

    Article  ADS  Google Scholar 

  19. E A Ray, John Rozen, Sarit Dhar, L C Feldman and J R Williams, J. Appl. Phys. 103, 023522 (2008)

    Article  ADS  Google Scholar 

  20. Takeshi Yamamoto, Yasuto Hijikata, Hiroyuki Yagucgi and Sadafumi Yashida, J. Appl. Phys. 47(10), 7803 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SANJEEV K GUPTA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GUPTA, S.K., AZAM, A. & AKHTAR, J. Variation of interface trap level charge density within the bandgap of 4H-SiC with varying oxide thickness. Pramana - J Phys 76, 165–172 (2011). https://doi.org/10.1007/s12043-011-0023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0023-5

Keywords.

PACS Nos

Navigation