Skip to main content
Log in

Application of Lie transform perturbation method for multidimensional non-Hermitian systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

Three-dimensional non-Hermitian systems are investigated using classical perturbation theory based on Lie transformations. Analytic expressions for total energy in terms of action variables are derived. Both real and complex semiclassical eigenvalues are obtained by quantizing the action variables. It was found that semiclassical energy eigenvalues calculated with the classical perturbation theory are in very good agreement with exact energies and for certain non-Hermitian systems second-order classical perturbation theory performed better than the second-order Rayleigh–Schroedinger perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Hori, Publ. Astron. Soc. Japan 18, 287 (1966)

    ADS  Google Scholar 

  2. G Hori, Publ. Astron. Soc. Japan 19, 229 (1967)

    ADS  Google Scholar 

  3. R Ramaswamy and R Marcus, J. Chem. Phys. 74, 1385 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  4. R Ramaswamy and R Marcus, J. Chem. Phys. 74, 1379 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  5. C M Bender and S Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. E Delabaere and F Pham, Phys. Lett. A250, 25, 29 (1998)

    Google Scholar 

  7. C M Bender, S Boettcher and P N Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C M Bender, F Cooper, P N Meisinger and V M Savage, Phys. Lett. A259, 224 (1999)

    MathSciNet  ADS  Google Scholar 

  9. C M Bender and G V Dunne, J. Math. Phys. 40, 4616 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. C M Bender, D C Brody and H F Jones, Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  11. A Nanayakkara, Czech. J. Phys. 54, 101 (2004); J. Phys. A: Math. Gen. 37, 4321 (2004)

    Google Scholar 

  12. A Nanayakkara, J. Phys. A: Math. Gen. 37, 4321 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C M Bender, S Boettcher and P N Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. C M Bender, J Chen, D W Darg and K A Milton, J. Phys. A: Math. Gen. 39, 4219 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. C M Bender and D W Darg, J. Math. Phys. 48, 042703 (2007)

    Article  MathSciNet  Google Scholar 

  16. C M Bender, G V Dunne, P N Meisinger and M Simsek, Phys. Lett. A281, 311 (2001)

    MathSciNet  ADS  Google Scholar 

  17. A Mostafazadeh, Phys. Lett. A357, 177 (2006)

    MathSciNet  ADS  Google Scholar 

  18. C L Siegel and J L Moser, Lectures on celestial mechanics (Springer-Verlag, Berlin, 1971)

    Book  MATH  Google Scholar 

  19. G D Birkhoff, Acta Math. 43, 1 (1922)

    Article  MathSciNet  Google Scholar 

  20. W Easter and R A Marcus, J. Chem. Phys. 61, 4301 (1974)

    Article  ADS  Google Scholar 

  21. D W Noid and R A Marcus, J. Chem. Phys. 67, 559 (1977)

    Article  ADS  Google Scholar 

  22. D W Noid, M L Koszykowski and R A Marcus, J. Chem. Phys. 67, 404, 4301 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASIRI NANAYAKKARA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NANAYAKKARA, A. Application of Lie transform perturbation method for multidimensional non-Hermitian systems. Pramana - J Phys 76, 37–45 (2011). https://doi.org/10.1007/s12043-011-0022-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0022-6

Keywords.

PACS Nos

Navigation