Skip to main content
Log in

Results from PAMELA, ATIC and FERMI: Pulsars or dark matter?

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

It is well known that dark matter dominates the dynamics of galaxies and clusters of galaxies. Its constituents remain a mystery despite an assiduous search for them over the past three decades. Recent results from the satellite-based PAMELA experiment show an excess in the positron fraction at energies between 10 and 100 GeV in the secondary cosmic ray spectrum. Other experiments, namely ATIC, HESS and FERMI, show an excess in the total electron (e  +  + e  − ) spectrum for energies greater than 100 GeV. These excesses in the positron fraction as well as the electron spectrum can arise in local astrophysical processes like pulsars, or can be attributed to the annihilation of the dark matter particles. The latter possibility gives clues to the possible candidates for the dark matter in galaxies and other astrophysical systems. In this article, we give a report of these exciting developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V Rubin, Scientific American 248, 96 (1983)

    Article  ADS  Google Scholar 

  2. Y Sofue and V Rubin, Ann. Rev. Astron. Astrophys. 39, 137 (2001), arXiv:astro-ph/0010594

    Article  ADS  Google Scholar 

  3. In the absence of dark matter, one would expect that the curves to fall off as we move towards the outer parts of the Galaxy.

  4. J Binney and S Tremaine, Galactic dynamics (Princeton University Press, London, 1987)

    MATH  Google Scholar 

  5. A Dekel, F Stoehr, G A Mamon, T J Cox, G S Novak and J R Primack, Nature 437, 707 (2005)

    Article  ADS  Google Scholar 

  6. G Mamon, in the meeting on Mass unveiling the mass: Extracting and interpreting galaxy masses (Kingston, Canada, 2009)

  7. F Zwicky, Helv. Phys. Acta 6, 110 (1933) J Binney and S D Tremaine, Galactic dynamics, 2nd edn (Princeton University Press, 2007)

  8. C L Bennett et al, Astrophys. J. 464, L1 (1996), arXiv:astro-ph/9601067 J R Bond, G Efstathiou and M Tegmark, Mon. Not. R. Astron. Soc. 291, L33 (1997), arXiv:astro-ph/9702100

  9. Supernova Cosmology Project Collaboration: M Kowalski et al, Astrophys. J. 686, 749 (2008), arXiv:0804.4142 [astro-ph]

    Google Scholar 

  10. WMAP Collaboration: G Hinshaw et al, Astrophys. J. Suppl. 180, 225 (2009), arXiv: 0803.0732 [astro-ph]

    Google Scholar 

  11. E Komatsu et al, arXiv:0803.0547v2 [astro-ph] (preprint)

  12. S Dodelson, Modern cosmology (Academic Press, Amsterdam, The Netherlands, 2003) V Sahni, Lect. Notes Phys. 653, 141 (2004), arXiv:astro-ph/0403324 T Padmanabhan, Phys. Rep. 380, 235 (2003), arXiv:hep-th/0212290 E J Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D15, 1753 (2006), arXiv: hep-th/0603057

  13. J F Navarro, C S Frenk and S D M White, Astrophys. J. 490, 493 (1997)

    Article  ADS  Google Scholar 

  14. Sharp increase in the density at the centre.

  15. W J G de Blok, S S McGaugh, A Bosma and V C Rubin, Astrophys. J. 552, L23 (2001)

    Article  Google Scholar 

  16. M Milgrom, Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  17. O Tiret and F Combes, Astron. Astrophys. 464, 2, 517 (2007), arXiv:astro-ph/0701011

    Article  Google Scholar 

  18. F Combes and O Tiret, Invited paper presented at The Invisible Universe International Conference edited by J-M Alimi, A Fuzfa and P-S Corasaniti (AIP Publications), arXiv: 0908.3289 [astro-ph.CO]

  19. D Clowe, M Bradac, A H Gonzalez, M Markevitch, S W Randall, C Jones and D Zaritsky, Astrophys. J. 648, L109 (2006), arXiv:astro-ph/0608407

    Article  ADS  Google Scholar 

  20. This is exactly analogous to the reason why the atomic hydrogen gas from two colliding galaxies is left at the centre of mass while the stars and the molecular gas pass through each other unaffected, as proposed and studied by Valluri et al [18] to explain the observed HI deficiency but normal molecular gas content of galaxies in clusters.

  21. The relativistic MOND theory [19] proposed by Bekenstein could be used to explain the Bullet Cluster [20].

  22. M Valluri and C J Jog, Astrophys. J. 357, 367 (1990)

    Article  ADS  Google Scholar 

  23. J D Bekenstein, Phys. Rev. D70, 083509 (2004); Erratum, ibid. D71, 069901 (2005), arXiv:astro-ph/0403694

  24. J D Bekenstein, Nucl. Phys. A827, 555C (2009), arXiv:0901.1524 [astro-ph]

    ADS  Google Scholar 

  25. V Trimble, Ann. Rev. Astron. Astrophys. 25, 425 (1987)

    Article  ADS  Google Scholar 

  26. G D’Amico, M Kamionkowski and K Sigurdson, arXiv:0907.1912 [astro-ph] (2009)

  27. D Pfenniger, F Combes and L Martinet, Astron. Astrophys. 285, 79 (1994)

    ADS  Google Scholar 

  28. E Witten, Phys. Rev. D30, 272 (1984)

    MathSciNet  ADS  Google Scholar 

  29. J e Alam, S Raha and B Sinha, Astrophys. J. 513, 572 (1999), arXiv:astro-ph/9704226

    Article  ADS  Google Scholar 

  30. For an earlier discussion on this topic, see, A Bhattacharyya, J e Alam, S Sarkar, P Roy, B Sinha, S Raha and P Bhattacharjee, Nucl. Phys. A661, 629 (1999), arXiv:hep-ph/ 9907262, and references therein

  31. S Banerjee, S K Ghosh, S Raha and D Syam, Phys. Rev. Lett. 85, 1384 (2000), arXiv: hep-ph/0006286 J E Horvath, Astrophys. Space Sci. 315, 361 (2008), arXiv:0803.1795 [astro-ph] For a recent summary on this topic, see S K Ghosh, arXiv:0808.1652 [astro-ph]

  32. T Schwetz, M A Tortola and J W F Valle, New J. Phys. 10, 113011 (2008), arXiv:0808.2016 [hep-ph]

    Article  ADS  Google Scholar 

  33. Depending on the mass of the particle which sets its thermal and relativistic properties, dark matter can be classified as hot, warm and cold [29].

  34. J A Peacock, Cosmological physics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  35. A Strumia and F Vissani, arXiv:hep-ph /0606054

  36. M Viel, J Lesgourgues, M G Haehnelt, S Matarrese and A Riotto, Phys. Rev. Lett. 97, 071301 (2006), arXiv:astro-ph/0605706

    Article  ADS  Google Scholar 

  37. J Lesgourgues and S Pastor, Phys. Rep. 429, 307 (2006), arXiv:astro-ph /0603494

    Article  ADS  Google Scholar 

  38. A Palazzo, D Cumberbatch, A Slosar and J Silk, Phys. Rev. D76, 103511 (2007), arXiv: 0707.1495 [astro-ph]

    ADS  Google Scholar 

  39. On the other hand, if the neutrinos are not thermally produced and their production is suppressed as in models with low reheating temperature [34], it is possible to weaken the cosmological bounds, especially from extra galactic radiation and distortion of CMBR spectra [35] (see also [36]).

  40. G Gelmini, S Palomares-Ruiz and S Pascoli, Phys. Rev. Lett. 93, 081302 (2004), arXiv:astro-ph/0403323

    Article  ADS  Google Scholar 

  41. G Gelmini, E Osoba, S Palomares-Ruiz and S Pascoli, J. Cosmol. Astropart. Phys. 810, 29 (2008), arXiv:0803.2735 [astro-ph]

    Article  Google Scholar 

  42. M A Acero and J Lesgourgues, Phys. Rev. D79, 045026 (2009), arXiv:0812.2249 [astro-ph]

    ADS  Google Scholar 

  43. C Boehm and P Fayet, Nucl. Phys. B683, 219 (2004), arXiv:hep-ph/0305261

    Article  ADS  Google Scholar 

  44. P Fayet, Phys. Rev. D75, 115017 (2007), arXiv:hep-ph/0702176

    ADS  Google Scholar 

  45. S Gopalakrishna, S J Lee and J D Wells, Phys. Lett. B680, 88 (2009), arXiv:0904.2007 [hep-ph]

    ADS  Google Scholar 

  46. N Borodatchenkova, D Choudhury and M Drees, Phys. Rev. Lett. 96, 141802 (2006), arXiv:hep-ph/0510147

    Article  ADS  Google Scholar 

  47. R Barbieri and L J Hall, arXiv:hep-ph/0510243

  48. Q H Cao, E Ma and G Rajasekaran, Phys. Rev. D76, 095011 (2007), arXiv:0708.2939 [hep-ph]

    ADS  Google Scholar 

  49. R Barbieri, L J Hall and V S Rychkov, Phys. Rev. D74, 015007 (2006), arXiv:hep-ph/ 0603188

    ADS  Google Scholar 

  50. R D Peccei and H R Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  51. R D Peccei, Lect. Notes Phys. 741, 3 (2008), arXiv:hep-ph/0607268

    Article  ADS  Google Scholar 

  52. G Bertone, D Hooper and J Silk, Phys. Rep. 405, 279 (2005), arXiv:hep-ph/0404175

    Article  ADS  Google Scholar 

  53. S P Martin, A Supersymmetry Primer, arXiv:hep-ph/9709356

  54. M Drees, R Godbole and P Roy, Theory and phenomenology of sparticles: An account of four-dimensional \(\mathcal N=1\) supersymmetry in high energy physics (World Scientific, Hackensack, USA, 2004)

    Google Scholar 

  55. The corresponding symmetry here is called R-parity. If this symmetry is exact, the particle is stable. If it is broken mildly, the LSP could be sufficiently long-lived, close to the age of the Universe.

  56. G Jungman, M Kamionkowski and K Griest, Phys. Rep. 267, 195 (1996)

    Article  ADS  Google Scholar 

  57. The neutralino could be either gaugino-dominated or higgsino-dominated depending on the composition. It turns out that neutralino composition should be sufficiently well-tempered [50] to explain the observed relic density. While one might debate the somewhat philosophical requirement of ‘fine-tuning’, it is now known that in the simplest models of supersymmetry breaking, like mSUGRA, only special regions in the parameter space, corresponding to the special conditions in the neutralino–neutralino annihilation channels satisfy the relic density constraint [51].

  58. N Arkani-Hamed, A Delgado and G F Giudice, Nucl. Phys. B741, 108 (2006), arXiv: hep-ph/0601041

    Article  ADS  Google Scholar 

  59. A Djouadi, M Drees and J L Kneur, J. High Energy Phys. 0603, 033 (2006), arXiv: hep-ph/0602001

    Article  MathSciNet  ADS  Google Scholar 

  60. See for example, L Covi and J E Kim, New J. Phys. 11, 105003 (2009), arXiv:0902.0769 [astro-ph.CO] and references therein

  61. N Arkani-Hamed, S Dimopoulos and G R Dvali, Phys. Lett. B429, 263 (1998), arXiv: hep-ph/9803315

    ADS  Google Scholar 

  62. N Arkani-Hamed, S Dimopoulos and G R Dvali, Phys. Rev. D59, 086004 (1999), arXiv: hep-ph/9807344

    ADS  Google Scholar 

  63. The extra space dimensions are compactified. The compact extra dimension manifests itself in ordinary four-dimensional space-time as an infinite tower of massive particles called Kaluza–Klein (KK) particles.

  64. L Randall and R Sundrum, Phys. Rev. Lett. 83, 3370 (1999), arXiv:hep-ph/9905221

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. L Randall and R Sundrum, Phys. Rev. Lett. 83, 4690 (1999), arXiv:hep-th/9906064

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. G Servant and T M P Tait, Nucl. Phys. B650, 391 (2003), arXiv:hep-ph/0206071

    Article  ADS  Google Scholar 

  67. D Hooper and S Profumo, Phys. Rep. 453, 29 (2007), arXiv:hep-ph/0701197

    Article  ADS  Google Scholar 

  68. H C Cheng, J L Feng and K T Matchev, Phys. Rev. Lett. 89, 211301 (2002)

    Article  ADS  Google Scholar 

  69. G Bertone, G Servant and G Sigl, Phys. Rev. D68, 044008 (2003), arXiv:hep-ph/0211342

    ADS  Google Scholar 

  70. J Hubisz and P Meade, Phys. Rev. D71, 035016 (2005), arXiv:hep-ph/0411264

    ADS  Google Scholar 

  71. G Belanger, A Pukhov and G Servant, J. Cosmol. Astropart. Phys. 0801, 009 (2008), arXiv:0706.0526 [hep-ph]

    Article  ADS  Google Scholar 

  72. I F M Albuquerque, L Hui and E W Kolb, Phys. Rev. D64, 083504 (2001), arXiv:hep-ph/ 0009017

    ADS  Google Scholar 

  73. D J H Chung, E W Kolb and A Riotto, Phys. Rev. Lett. 81, 4048 (1998), arXiv: hep-ph/9805473 E W Kolb, D J H Chung and A Riotto, arXiv:hep-ph/9810361

    Google Scholar 

  74. I F M Albuquerque and C Perez de los Heros, Phys. Rev. D81, 063510 (2010), arXiv: 1001.1381 [astro-ph.HE]

    ADS  Google Scholar 

  75. It cannot have electromagnetic interactions as this would mean it is charged, and it cannot have strong interactions as this would most likely mean it would be baryonic in from. Both these prospects are already ruled out by experiments.

  76. In spite of being electrically neutral, dark-matter particle can have a non-zero electric and/or magnetic dipole moment, if it has a non-zero spin. In such a case the strongest constraint comes from Big Bang Nucleosynthesis. Interested readers are referred to the paper by Kamoinkowski et al [66] and particularly figure 1 therein.

  77. More generally, the ‘WIMP–nucleon cross-section’ can be divided into (i) elastic spin-dependent (eSD), (ii) elastic spin-independent (eSI), (iii) inelastic spin-dependent (iSD) and (iv) inelastic spin-independent (iSI)

  78. K Sigurdson, M Doran, A Kurylov, R R Caldwell and M Kamionkowski, Phys. Rev. D70, 083501 (2004), Erratum, ibid. D73, 089903 (2006), arXiv:astro-ph/0406355

  79. These are typically the same experiments which measure the cosmic ray spectrum. For a comprehensive list of all these experiments and other useful information like propagation packages, see http://www.mpi-hd.mpg.de/hfm/CosmicRay/CosmicRaySites.html.

  80. P Bhattacharjee and G Sigl, Phys. Rep. 327, 109 (2000), arXiv:astro-ph/9811011

    Article  ADS  Google Scholar 

  81. For a discussion of this effect, please see D Hooper, arXiv:0901.4090 [hep-ph]

  82. P Jean et al, Astron. Astrophys. 407, L55 (2003), arXiv:astro-ph/0309484

    Article  ADS  Google Scholar 

  83. It should be noted that the integral spectrometer has a very good resolution of about 2 keV over a range of energies 20 keV to 8 MeV.

  84. G Weidenspointner et al, Nature 451, 159 (2008)

    Article  ADS  Google Scholar 

  85. DAMA Collaboration: R Bernabei et al, Eur. Phys. J. C56, 333 (2008), arXiv:0804.2741 [astro-ph]

  86. Looking for such modulations further limit any systematics present in the experiment.

  87. These results have been recently updated with six annual cycles for DAMA/LIBRA; the CL has now moved up to 8.9 σ [72].

  88. R Bernabei et al, Eur. Phys. J. C67, 39 (2010), arXiv:1002.1028 [astro-ph.GA]

    Article  ADS  Google Scholar 

  89. The final results have a non-zero probability of two events in the signal region, we comment on it in the next section.

  90. XENON Collaboration: J Angle et al, Phys. Rev. Lett. 100, 021303 (2008), arXiv:0706. 0039 [astro-ph]

    Google Scholar 

  91. XENON100 Collaboration: E Aprile et al, Phys. Rev. Lett. 105, 131302 (2010), arXiv: 1005.0380 [astro-ph.CO]

  92. CDMS Collaboration: Z Ahmed et al, Phys. Rev. Lett. 102, 011301 (2009), arXiv:0802. 3530 [astro-ph]

    Google Scholar 

  93. CoGeNT Collaboration: C E Aalseth et al, Phys. Rev. Lett. 101, 251301 (2008); Erratum, ibid. 102, 109903 (2009), arXiv:0807.0879 [astro-ph]

  94. CoGeNT Collaboration: C E Aalseth et al, arXiv:1002.4703 [astro-ph.CO]

  95. S Chang, J Liu, A Pierce, N Weiner and I Yavin, J. Cosmol. Astropart. Phys. 1008, 018 (2010), arXiv:1004.0697 [hep-ph]

    Article  ADS  Google Scholar 

  96. J Kopp, T Schwetz and J Zupan, J. Cosmol. Astropart. Phys. 1002, 014 (2010), arXiv:0912.4264 [hep-ph]

    Article  ADS  Google Scholar 

  97. PAMELA Collaboration: O Adriani et al, Nature 458, 607 (2009), arXiv:0810.4995 [astro-ph]

  98. J Chang et al, Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  99. HESS Collaboration: F Aharonian et al, Phys. Rev. Lett. 101, 261104 (2008), arXiv:0811. 3894 [astro-ph]

    Google Scholar 

  100. The Fermi LAT Collaboration: A A Abdo et al, Phys. Rev. Lett. 102, 181101 (2009), arXiv:0905.0025 [astro-ph.HE]

    Google Scholar 

  101. I V Moskalenko and A W Strong, Astrophys. J. 493, 694 (1998)

    Article  ADS  Google Scholar 

  102. A W Strong and I V Moskalenko, Adv. Space Res. 27, 717 (2001), arXiv:astro-ph/0101068

    Article  ADS  Google Scholar 

  103. AMS Collaboration: M Aguilar et al, Phys. Rep. 366, 331 (2002); Erratum, ibid. 380, 97 (2003)

  104. S W Barwick et al, Astrophys. J. 498, 779 (1998), arXiv:astro-ph/9712324

    Article  ADS  Google Scholar 

  105. S Torii et al, Astrophys. J. 559, 973 (2001)

    Article  ADS  Google Scholar 

  106. PPB-BETS Collaboration: S Torii et al, arXiv:0809.0760 [astro-ph]

  107. A W Strong, I V Moskalenko and O Reimer, Astrophys. J. 613, 962 (2004), arXiv: astro-ph/0406254

    Article  ADS  Google Scholar 

  108. http://galprop.stanford.edu/web_galprop/galprop_home.html

  109. http://www-ekp.physik.uni-karlsruhe.de/~zhukov/GalProp/galpropanal.html

  110. http://apcauger.in2p3.fr/CRPropa/index.php

  111. Some codes are constructed to fix the various parameters of their own cosmic ray propagation model (see for example, DRAGON [94]). Here one can fix the diffusion coefficients from PAMELA and other experimental data.

  112. C Evoli, D Gaggero, D Grasso and L Maccione, J. Cosmol. Astropart. Phys. 0810, 018 (2008), arXiv:0807.4730 [astro-ph]

    Article  ADS  Google Scholar 

  113. http://crt.osu.edu/

  114. http://wwwasd.web.cern.ch/wwwasd/geant/

  115. L Desorgher, E O Fluckiger, M R Moser and R Butikofer, Prepared for 28th International Cosmic Ray Conferences (ICRC 2003) (Tsukuba, Japan, 31 Jul–7 Aug 2003)

  116. See for example, A Strumia, Talk presented at Planck 2009, http://www.pd.infn.it/ planck09/Talks/Strumia.pdf P Meade, M Papucci, A Strumia and T Volansky, arXiv:0905.0480 [hep-ph]

  117. P Gondolo, J Edsjo, P Ullio, L Bergstrom, M Schelke and E A Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004), arXiv:astro-ph/0406204

    Article  ADS  Google Scholar 

  118. For an independent analysis which confirms the PAMELA excess, see [100].

  119. T Delahaye, F Donato, N Fornengo, J Lavalle, R Lineros, P Salati and R Taillet, Astron. Astrophys. 501, 821 (2009), arXiv:0809.5268 [astro-ph]

    Article  ADS  Google Scholar 

  120. The cosmic ray electrons follow a power-law spectrum, with an index ~ − 3. Thus it is normalized by a factor E 3.

  121. D Hooper, P Blasi and P D Serpico, J. Cosmol. Astropart. Phys. 0901, 025 (2009), arXiv:0810.1527 [astro-ph]

    Article  ADS  Google Scholar 

  122. P Blasi, arXiv:0903.2794 [astro-ph.HE]

  123. The curvature radiation arises due to relativistic, charged particles moving around curved magnetic field lines (see for details, Gil et al [103]).

  124. J Gil, Y Lyubarsky and G I Melikidze, Astrophys. J. 600, 872 (2004), arXiv:astro-ph/ 0310621

    Article  ADS  Google Scholar 

  125. S Coutu et al, Astropart. Phys. 11, 429 (1999)

    Article  ADS  Google Scholar 

  126. A M Atoian, F A Aharonian and H J Volk, Phys. Rev. D52, 3265 (1995)

    ADS  Google Scholar 

  127. H Yuksel, M D Kistler and T Stanev, Phys. Rev. Lett. 103, 051101 (2009), arXiv:0810.2784 [astro-ph]

    Article  ADS  Google Scholar 

  128. I Büsching, O C de Jager, M S Potgieter and C Venter, Astrophys. J. 78, L39 (2008)

    Article  Google Scholar 

  129. M Ahlers, P Mertsch and S Sarkar, arXiv:0909.4060 [astro-ph.HE]

  130. P Mertsch and S Sarkar, arXiv:0905.3152 [astro-ph.HE]

  131. J Lavalle, Q Yuan, D Maurin and X J Bi, Astron. Astrophys. 479, 427 (2008), arXiv: 0709.3634 [astro-ph]

    Article  ADS  Google Scholar 

  132. J Hisano, S Matsumoto and M M Nojiri, Phys. Rev. Lett. 92, 031303 (2004), arXiv: hep-ph/0307216 J Hisano, S Matsumoto, M M Nojiri and O Saito, Phys. Rev. D71, 063528 (2005), arXiv:hep-ph/0412403

  133. For a recent discussion, see S Hannestad and T Tram, arXiv:1008.1511 [astro-ph.CO]

  134. It should also be considered while computing annhilation cross-section in the early Universe [112c].

  135. S Mohanty, R Rao and D P Roy, Reconciling heavy wino dark matter model with the relic density and PAMELA data using Sommerfeld effect, arXiv:1009.5058 [hep-ph]

  136. Non-thermal production typically refers to production mechanisms through decays of very heavy particles like inflaton [113].

  137. D J H Chung, E W Kolb and A Riotto, Phys. Rev. D60, 063504 (1999), arXiv:hep-ph/ 9809453

    ADS  Google Scholar 

  138. S Dodelson, A V Belikov, D Hooper and P Serpico, Phys. Rev. D80, 083504 (2009), arXiv:0903.2829 [astro-ph.CO]

    ADS  Google Scholar 

  139. A V Belikov and D Hooper, arXiv:0906.2251 [astro-ph.CO]

  140. I Cholis, G Dobler, D P Finkbeiner, L Goodenough, T R Slatyer and N Weiner, arXiv:0907.3953 [astro-ph.HE]

  141. D Hooper and K M Zurek, arXiv:0909.4163 [hep-ph]

  142. L Goodenough and D Hooper, arXiv:0910.2998 [hep-ph]

  143. M Pato, L Pieri and G Bertone, arXiv:0905.0372 [astro-ph.HE]

  144. N Arkani-Hamed, D P Finkbeiner, T R Slatyer and N Weiner, Phys. Rev. D79, 015014 (2009), arXiv:0810.0713 [hep-ph]

    ADS  Google Scholar 

  145. A Katz and R Sundrum, J. High Energy Phys. 0906, 003 (2009), arXiv:0902.3271 [hep-ph]

    Article  ADS  Google Scholar 

  146. I Cholis, L Goodenough and N Weiner, Phys. Rev. D79, 123505 (2009), arXiv:0802.2922 [astro-ph]

    ADS  Google Scholar 

  147. I Cholis, L Goodenough, D Hooper, M Simet and N Weiner, arXiv:0809.1683 [hep-ph]

  148. I Cholis, D P Finkbeiner, L Goodenough and N Weiner, arXiv:0810.5344 [astro-ph]

  149. D Hooper and T M P Tait, Phys. Rev. D80, 055028 (2009), arXiv:0906.0362 [hep-ph]

    ADS  Google Scholar 

  150. I Gogoladze, N Okada and Q Shafi, Phys. Lett. B679, 237 (2009), arXiv:0904.2201 [hep-ph]

    ADS  Google Scholar 

  151. D Hooper and K M Zurek, Phys. Rev. D79, 103529 (2009), arXiv:0902.0593 [hep-ph]

    ADS  Google Scholar 

  152. Some of the first simulations using PYTHIA and DARK SUSY for the KK gravition can be found in [128]. Similar study for SUSY can be found in [129]. These have been done when HEAT results have shown an excess though in a less statistically significant way.

  153. D Hooper and G D Kribs, Phys. Rev. D70, 115004 (2004), arXiv:hep-ph/0406026

    ADS  Google Scholar 

  154. E A Baltz and J Edsjo, Phys. Rev. D59, 023511 (1998), arXiv:astro-ph/9808243

    Google Scholar 

  155. M Ibe, H Murayama, S Shirai and T T Yanagida, J. High Energy Phys. 0911, 120 (2009), arXiv:0908.3530 [hep-ph]

    Article  ADS  Google Scholar 

  156. A Ibarra, D Tran and C Weniger, arXiv:0906.1571 [hep-ph]

  157. A Ibarra, D Tran and C Weniger, arXiv:0909.3514 [hep-ph]

  158. A Ibarra and D Tran, J. Cosmol. Astropart. Phys. 0902, 021 (2009), arXiv:0811.1555 [hep-ph]

    Article  ADS  Google Scholar 

  159. E Nardi, F Sannino and A Strumia, J. Cosmol. Astropart. Phys. 0901, 043 (2009), arXiv:0811.4153 [hep-ph]

    Article  ADS  Google Scholar 

  160. W Buchmuller, L Covi, K Hamaguchi, A Ibarra and T Yanagida, J. High Energy Phys. 0703, 037 (2007), arXiv:hep-ph/0702184

    Article  MathSciNet  ADS  Google Scholar 

  161. I Gogoladze, R Khalid, Q Shafi and H Yuksel, Phys. Rev. D79, 055019 (2009), arXiv:0901.0923 [hep-ph]

    ADS  Google Scholar 

  162. W Buchmuller, A Ibarra, T Shindou, F Takayama and D Tran, J. Cosmol. Astropart. Phys. 0909, 021 (2009), arXiv:0906.1187 [hep-ph]

    Article  ADS  Google Scholar 

  163. A Arvanitaki, S Dimopoulos, S Dubovsky, P W Graham, R Harnik and S Rajendran, Phys. Rev. D79, 105022 (2009), arXiv:0812.2075 [hep-ph]

    ADS  Google Scholar 

  164. A Arvanitaki, S Dimopoulos, S Dubovsky, P W Graham, R Harnik and S Rajendran, Phys. Rev. D80, 055011 (2009), arXiv:0904.2789 [hep-ph]

    ADS  Google Scholar 

  165. M R Buckley, K Freese, D Hooper, D Spolyar and H Murayama, arXiv:0907.2385 [astro-ph.HE]

  166. M Fairbairn and J Zupan, arXiv:0810.4147 [hep-ph]

  167. D Malyshev, I Cholis and J Gelfand, Phys. Rev. D80, 063005 (2009), arXiv:0903.1310 [astro-ph.HE]

    ADS  Google Scholar 

  168. FERMI-LAT Collaboration: D Grasso et al, arXiv:0905.0636 [astro-ph.HE]

  169. M Kadastik, M Raidal and A Strumia, arXiv:0908.1578 [hep-ph]

  170. J Hisano, M Kawasaki, K Kohri and K Nakayama, Phys. Rev. D79, 043516 (2009), arXiv:0812.0219 [hep-ph]

    ADS  Google Scholar 

  171. J Goodman, M Ibe, A Rajaraman, W Shepherd, T M P Tait and H B P Yu, arXiv:1005.1286 [hep-ph] J Goodman, M Ibe, A Rajaraman, W Shepherd, T M P Tait and H B P Yu, arXiv:1008.1783 [hep-ph]

  172. The CDMS-II Collaboration: Z Ahmed et al, arXiv:0912.3592 [astro-ph.CO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBTOSH CHOWDHURY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHOWDHURY, D., VEMPATI, S.K. & JOG, C.J. Results from PAMELA, ATIC and FERMI: Pulsars or dark matter?. Pramana - J Phys 76, 1–22 (2011). https://doi.org/10.1007/s12043-011-0019-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0019-1

Keywords.

PACS Nos

Navigation