Skip to main content
Log in

Atomistic simulation of the point defects in TaW ordered alloy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

Combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM), the formation, migration and activation energies of the point defects for six-kind migration mechanisms in B2-type TaW alloy have been investigated. The results showed that the anti-site defects TaW and WTa were easier to form than Ta and W vacancies owing to their lower formation energies. Comparing the migration and activation energies needed for six-kind migration mechanisms of a Ta (or W) vacancy, we found that one nearest-neighbour jump (1NNJ) was the most favourable because of its lowest migration and activation energies, but it would lead to a disorder in the alloy. One next-nearest-neighbour jump (1NNNJ) and one third-nearest-neighbour jump (1TNNJ) could maintain the ordered property of the alloy but required higher migration and activation energies. So the 1NNNJ and 1TNNJ should be replaced by straight [100] six nearest-neighbor cyclic jumps (S[100]6NNCJ) (especially) or bent [100] six nearest-neighbour cyclic jumps (B[100]6NNCJ) and [110] six nearest-neighbor cyclic jumps ([110]6NNCJ), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y J Liu, Y Ge, D Yu, T Y Pan and L J Zhang, J. Alloy Compounds 470, 176 (2009)

    Article  Google Scholar 

  2. S Mrowec and Z Grzesik, J. Phys. Chem. Solids 65, 1651 (2004)

    Article  ADS  Google Scholar 

  3. C Ratsch, A Zangwill, P Smilauer and D D Vedensky, Phys. Rev. Lett. 72, 3194 (1994)

    Article  ADS  Google Scholar 

  4. M S Daw and M I Baskes, Phys. Rev. B29, 6443 (1984)

    ADS  Google Scholar 

  5. M Menon, E Richter, A Mavrandonakis, G Froudakis and A N Andriotis, Phys. Rev. B69, 115322 (2004)

    ADS  Google Scholar 

  6. V Blum and A Zunger, Phys. Rev. B69, 020103 (2004)

    ADS  Google Scholar 

  7. Y C Ma, P O Lehtinen, A S Foster and R M Nieminen, Phys. Rev. B72, 085451 (2005)

    ADS  Google Scholar 

  8. F C Zhang, Z Y Zhang, W H Zhang, J F Yan and J N Yun, Chin. Phys. Lett. 26, 016105 (2009)

    Article  ADS  Google Scholar 

  9. Y J Cho, C H Kim, H S Kim, J Park, H C Choi, H J Shin, G H Gao and H S Kang, Chem. Mater. 21, 136 (2009)

    Article  Google Scholar 

  10. B Baumeier, P Krüger and J Pollmann, Phys. Rev. B76, 085407 (2007)

    ADS  Google Scholar 

  11. I J Wu and G Y Guo, Phys. Rev. B76, 035343 (2007)

    ADS  Google Scholar 

  12. C Jiang, C Wolverton, Jorge Sofo, L Q Chen and Z K Liu, Phys. Rev. B69, 214202 (2004)

    ADS  Google Scholar 

  13. C Bercegeay, G Jomard and S Bernard, Phys. Rev. B77, 104203 (2008)

    ADS  Google Scholar 

  14. P E A Turchi, A Gonis, V Drchal and J Kudrnovský, Phys. Rev. B64, 085112 (2001)

    ADS  Google Scholar 

  15. B W Zhang and Y F Ouyang, Phys. Rev. B48, 3022 (1993)

    ADS  Google Scholar 

  16. B W Zhang, Y F Ouyang, S Z Liao and Z P Jin, Physica B262, 218 (1999)

    ADS  Google Scholar 

  17. W Y Hu, B W Zhang, S Z Liao and B Y Huang, J. Alloy Compounds 287, 159 (1999)

    Article  Google Scholar 

  18. Y Xie and J M Zhang, Can. J. Phys. 86, 801 (2008)

    Article  ADS  Google Scholar 

  19. J M Zhang, X M Wei and H Xin, Appl. Surf. Sci. 243, 1 (2005)

    Article  ADS  Google Scholar 

  20. J M Zhang, Y Yang, K W Xu and V Ji, Can. J. Phys. 86, 935 (2008)

    Article  Google Scholar 

  21. J M Zhang, X L Song, X J Zhang, K W Xu and V Ji, Surf. Sci. 600, 1277 (2006)

    Article  ADS  Google Scholar 

  22. J M Zhang, G X Chen and K W Xu, Physica B390, 320 (2007)

    ADS  Google Scholar 

  23. G X Chen, J M Zhang and K W Xu, J. Alloy Compounds 430, 102 (2007)

    Article  Google Scholar 

  24. H R Gong, L T Kong, W S Lai and B X Liu, Phys. Rev. B66, 104204 (2002)

    ADS  Google Scholar 

  25. E A Brandes, Smithells metals reference book, 6th edn (Butterworths, London, 1983)

    Google Scholar 

  26. R A Johnson, Phys. Rev. B39, 12554 (1989)

    ADS  Google Scholar 

  27. M I Pascuet, R C Pasianot and A M Monti, J. Mol. Catal. A167, 165 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JIAN-MIN ZHANG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIN, ZL., ZHANG, JM., ZHANG, Y. et al. Atomistic simulation of the point defects in TaW ordered alloy. Pramana - J Phys 76, 127–138 (2011). https://doi.org/10.1007/s12043-011-0005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0005-7

Keywords.

PACS Nos

Navigation