Skip to main content

Advertisement

Log in

Super-resolution by pupil plane phase filtering

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Resolution capability of any optical imaging system is limited by residual aberrations as well as diffraction effects. Overcoming this fundamental limit is called super-resolution. Several new paradigms for super-resolution in optical systems use ‘a posteriori’ digital image processing. In these ventures the three-dimensional point spread function (PSF) of the lens plays a key role in image acquisition. A straightforward tailoring of the PSF can be performed by appropriate pupil plane filtering. With a brief review of the state-of-art in this research area, this paper dwells upon the inverse problem of global optimization of the pupil function by phase filtering in accordance with the desired PSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Born and E Wolf, Principles of optics (Pegramon, Oxford, 1980)

    Google Scholar 

  2. M Gu, Advanced optical imaging theory (Springer-Verlag, Berlin, 1999)

    Google Scholar 

  3. J W Goodman, Introduction to Fourier optics, 2nd edn (McGraw-Hill, Singapore, 1996)

    Google Scholar 

  4. M A Paesler and P J Moyer, Near-field optics: Theory, introduction, and applications (John Wiley, New York, 1996)

    Google Scholar 

  5. T Wilson and C J R Sheppard, Theory and practice of scanning optical microscopy (Academic, London, 1984)

    Google Scholar 

  6. http://www.leica-microsystems.com

  7. M G L Gustafsson, PNAS 102(37), 13081 (2005)

    Article  ADS  Google Scholar 

  8. P Jacquinot and B Rozien-Dossier, lsApodisation’ in progress in optics edited by E Wolf (North-Holland, Amsterdam, 1964) 3rd edition

    Google Scholar 

  9. M De, L N Hazra and P Sengupta, Opt. Acta 22, 125 (1975)

    ADS  Google Scholar 

  10. L N Hazra, Opt. Commun. 21(2), 232 (1977)

    Article  ADS  Google Scholar 

  11. G Toraldo di Francia, Atti Fond. Giorgio Ronchi. 7, 366 (1952)

    Google Scholar 

  12. A Boivin, Théorie el Calcul des Figs de Diffraction de Révolution (Université de Laval, Quebec, 1964)

    Google Scholar 

  13. C J R Sheppard and Z S Hegedus, J. Opt. Soc. Am. A5, 643 (1988)

    Article  ADS  Google Scholar 

  14. M M Corral, P Andrés and J Ojeda-Castaneda, Appl. Opt. 33(11), 2223, (1994)

    Article  ADS  Google Scholar 

  15. M Martínez-Corral, P Andrés, J Ojeda-Castañeda and G Saavedra, Opt. Commun. 119, 491 (1995)

    Article  ADS  Google Scholar 

  16. T R M Sales and G M Morris, J. Opt. Soc. Am. A14(7), 1637 (1997)

    Article  ADS  Google Scholar 

  17. T R M Sales and G M Morris, Opt. Commun. 156, 227 (1998)

    Article  ADS  Google Scholar 

  18. C J R Sheppard, M D Sharma and A Arbouet, Optik 111, 347 (2000)

    Google Scholar 

  19. M Martínez-Corral, M T Caballero, E H K Stelzer and J Swoger, Opt. Express 10(1), 98 (2002)

    ADS  Google Scholar 

  20. M P Cagigal, J E Oti, V F Canals and P J Valle, Opt. Commun. 241, 249 (2004)

    Article  ADS  Google Scholar 

  21. S Ledesma, J Campos, J C Escalera and M J Yzuel, Opt. Lett. 29(9), 932 (2004)

    Article  ADS  Google Scholar 

  22. H Luo and C Zhou, Appl. Opt. 43(34), 6242 (2004)

    Article  ADS  Google Scholar 

  23. M Yun, L Liu, J Sun and D Liu, J. Opt. Soc. Am. A22, 272 (2005)

    Article  ADS  Google Scholar 

  24. S Ledesma, J C Escalera, J Campos and M J Yzuel, Opt. Commun. 249, 183 (2005)

    Article  ADS  Google Scholar 

  25. X Liu, L Liu, D Liu and L Bai, Optik 117, 453 (2006)

    ADS  Google Scholar 

  26. L N Hazra, MICRON 38, 129 (2007)

    Article  Google Scholar 

  27. P V Valle, J E Oli, V F Canales and M P Cagigal, Opt. Commun. 272, 325 (2007)

    Article  ADS  Google Scholar 

  28. C J R Sheppard, J Campos, J C Escalera and S Ledesma, Opt. Commun. 281, 913 (2008)

    Article  ADS  Google Scholar 

  29. C J R Sheppard, J Campos, J C Escalera and S Ledesma, Opt. Commun. 281, 3623 (2008)

    Article  ADS  Google Scholar 

  30. T G Jabbour, M Petrovich and S M Kuebler, Opt. Commun. 281, 2002 (2008)

    Article  ADS  Google Scholar 

  31. L Liu and G Wang, Optik 119, 481 (2008)

    ADS  Google Scholar 

  32. Y Tan, R Guo, S Xiao, G Chang and W Huang, J. Laser Micro/Nanoengineering 1, 281 (2006)

    Article  Google Scholar 

  33. L N Hazra, Appl. Opt. 27, 3464 (1988)

    Article  ADS  Google Scholar 

  34. W T Welford, Aberration of optical systems (Academic, London, 1986)

    Google Scholar 

  35. I Rechenberg, Evolutionsstrategie: Optimeirung Technischer System nach Prinzipien der Biologischen Evolution (Frommen-Holzboog Verlag, Stuttgart, 1943)

    Google Scholar 

  36. D E Goldberg, Genetic algorithm in search, optimization and machine learning (Addison-Wesley, Reading, 1989)

    Google Scholar 

  37. S Banerjee and L N Hazra, J. Mod. Opt. 49,7, 1111 (2002)

    Article  ADS  Google Scholar 

  38. L N Hazra and N Reza, Proc. SPIE 7787, 77870D–1 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Hazra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, L.N., Reza, N. Super-resolution by pupil plane phase filtering. Pramana - J Phys 75, 855–867 (2010). https://doi.org/10.1007/s12043-010-0167-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0167-8

Keywords

Navigation