Skip to main content
Log in

Absorption and dispersion in metamaterials: Feasibility of device applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a quantitative study of the effects of losses in layered media with a metamaterial layer as the constituent. The metamaterial is modelled by a causal isotropic effective medium (Lorentz-type) response. The parameters for the model are picked from a recent experiment. Two specific examples, namely, that of resonant tunnelling (RT) and imaging are chosen to demonstrate the devastating effects of losses in the present day metamaterials. It is then shown how large delays in RT, as well as near perfect imaging can be restored in gain-doped metamaterials. We also point out yet another use of metamaterials for achieving near perfect absorption, and its use for probing strong atom-field interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V G Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. J B Pendry, A Holden, D Robbins and W Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  3. S A Ramakrishna, Rep. Prog. Phys. 68, 449 (2005)

    Article  ADS  Google Scholar 

  4. D R Smith, W J Padilla, D C Vier, S C Nemat-Nasser and S Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  5. V M Shalaev, Nature Photon. 1, 41 (2007)

    Article  ADS  Google Scholar 

  6. J B Pendry, Contemp. Phys. 45, 191 (2004)

    Article  ADS  Google Scholar 

  7. J B Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  8. N Fang and X Zhang, Appl. Phys. Lett. 82, 161 (2003)

    Article  ADS  Google Scholar 

  9. N I Zheludev, S L Prosvirnin, N Papasimakis and V A Fedotov, Nature Photon. 2, 351 (2008)

    Article  ADS  Google Scholar 

  10. N Engheta, Science 317, 1698 (2007)

    Article  ADS  Google Scholar 

  11. S Dutta Gupta, R Arun and G S Agarwal, Phys. Rev. B69, 113104 (2004)

    ADS  Google Scholar 

  12. N Papasimakis, V A Fedotov, N I Zheludev and S L Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008)

    Article  ADS  Google Scholar 

  13. C Caloz and T Itoh, Electromagnetic MMs: Transmission line theory and microwave applications (John Wiley & Sons Inc., New Jersey, 2006)

    Google Scholar 

  14. G Dolling, C Enkrich, M Wegener, C M Soukoulis and S Linden, Opt. Lett. 31, 1800 (2006)

    Article  ADS  Google Scholar 

  15. E P Wigner, Phys. Rev. 98, 145 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. M I Stockman, Phys. Rev. Lett. 98, 177404 (2007)

    Article  ADS  Google Scholar 

  17. P Kinsler and M W McCall, Phys. Rev. Lett. 101, 167401 (2008)

    Article  ADS  Google Scholar 

  18. A Degiron, J J Mock and D R Smith, Opt. Exp. 15, 1115 (2007)

    Article  ADS  Google Scholar 

  19. P P Orth, J Evers and C H Keitel, arXiv:0711.0303v1 [quant-ph]

  20. V Anant, A F Abouraddy and K K Berggren, arXiv:0711.5021v1 [physics.optics]

  21. S Chakrabarti, S A Ramakrishna and H Wanare, Opt. Lett. 34, 3728 (2009)

    Article  ADS  Google Scholar 

  22. Y Sivan, S Xiao, U K Chettiar, A V Kildishev and V M Shalaev, Opt. Exp. 17, 24060 (2009)

    Article  ADS  Google Scholar 

  23. Y Zeng, Q Wu and D H Werner, Opt. Lett. 35, 1431 (2010)

    Article  ADS  Google Scholar 

  24. M Bloemer, G D’Aguanno and M Scalora, Appl. Phys. Lett. 87, 261921 (2005)

    Article  ADS  Google Scholar 

  25. M G Raizen, R J Thompson, R J Brecha, H J Kimble and H J Carmichael, Phys. Rev. Lett. 63, 240 (1989)

    Article  ADS  Google Scholar 

  26. R J Thompson, G Rempe and H J Kimble, Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  27. H J Carmichael, L Tian and W Ren, Advances in atomic, molecular and optical physics, supplement 2 edited by P R Berman (Academic Press, Boston, 1994)

    Google Scholar 

  28. D Sarid, Phys. Rev. Lett. 47, 1927 (1981) D Sarid, Phys. Rev. Lett 48, 446 (1982)

    Article  ADS  Google Scholar 

  29. S Dutta Gupta, S Deb and S Dutta Gupta, J. Opt. 12, 075103 (2010)

    Article  ADS  Google Scholar 

  30. M Born and E Wolf, Principles of optics: Electromagnetic theory of propagation (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  31. P Yeh, Optical waves in layered media (Wiley, New York, 1988)

    Google Scholar 

  32. S Dutta Gupta, Progress in optics, in: Nonlinear optics of stratified media edited by E Wolf (Elsevier Science, Amsterdam, 1998) Vol. 38

    Google Scholar 

  33. S Dutta Gupta and G S Agarwal, Opt. Comm. 103, 122 (1993)

    Article  ADS  Google Scholar 

  34. I Newton, Opticks or a treatise of the reflections, refractions, inflections, and colours of light (Dover Publications, New York, 1952)

    Google Scholar 

  35. R Y Chiao, P G Kwait and A M Steinberg, Physica B175, 257 (1991)

    ADS  Google Scholar 

  36. H Mizuta and T Tanoue, The physics and application of resonant tunneling diodes (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  37. R Dragila, B Luther-Davies and S Vukovic, Phys. Rev. Lett. 55, 1117 (1985)

    Article  ADS  Google Scholar 

  38. Ivan Avrutsky, Yang Zhao and Vladimir Kochergin, Opt. Lett. 25, 595 (2000)

    Article  ADS  Google Scholar 

  39. S Tomita et al, Opt. Exp. 16, 9942 (2008)

    Article  ADS  Google Scholar 

  40. Sergei Sidorenko and Olivier J F Martin, Opt. Exp. 15, 6380 (2007)

    Article  ADS  Google Scholar 

  41. S Dutta Gupta, Pramana — J. Phys. 72, 303 (2009)

    Article  ADS  Google Scholar 

  42. D Golla, S Deb and S Dutta Gupta, arXiv:0911.5374v2 [physics.optics]

  43. Bae-Ian Wu, T M Grzegorczyk, Y Zhang and J A Kong, J. Appl. Phys. 93, 9386 (2003)

    Article  ADS  Google Scholar 

  44. S Zhang, W Fan, K J Malloy, S R J Brueck, N C Panoiu and R M Osgood, Opt. Exp. 13, 4922 (2005)

    Article  ADS  Google Scholar 

  45. J B Pendry and S Anantha Ramakrishna, Physica B338, 329 (2003)

    ADS  Google Scholar 

  46. J D Baena, L Jelinek, R Marqués and F Medina, Phys. Rev. B72, 075116 (2005)

    ADS  Google Scholar 

  47. A N Lagarkov and V N Kissel, Phys. Rev. Lett. 92, 077401 (2004)

    Article  ADS  Google Scholar 

  48. A Grbic and G V Eleftheriades, Phys. Rev. Lett. 92, 117403 (2004)

    Article  ADS  Google Scholar 

  49. M W Feise and Y S Kivshar, Phys. Lett. A334, 326 (2005)

    ADS  Google Scholar 

  50. K Aydin, I Bulu and E Ozbay, Appl. Phys. Lett. 90, 254102 (2007)

    Article  ADS  Google Scholar 

  51. D R Smith, D Schurig, M Rosenbluth, S Schultz, S A Ramakrishna and J B Pendry, Appl. Phys. Lett. 82, 1506 (2003)

    Article  ADS  Google Scholar 

  52. R Merlin, Appl. Phys. Lett. 84, 1290 (2004)

    Article  ADS  Google Scholar 

  53. V Veselago, Appl. Phys. B81, 403 (2005)

    ADS  Google Scholar 

  54. V A Podolskiy and E E Narimanov, Opt. Lett. 30, 75 (2005)

    Article  ADS  Google Scholar 

  55. S A Ramakrishna and J B Pendry, Phys. Rev. B67, 201101(R) (2003)

    ADS  Google Scholar 

  56. J R Tischler, M S Bradley and V Bulović, Opt. Lett. 31, 2045 (2006)

    Article  ADS  Google Scholar 

  57. S Dutta Gupta, Opt. Lett. 32, 1483 (2007)

    Article  ADS  Google Scholar 

  58. S Deb, S Dutta Gupta, J Banerji and S Dutta Gupta, J. Opt. A: Pure Appl. Opt. 9, 555 (2007)

    Article  ADS  Google Scholar 

  59. S Deb and S Dutta Gupta, CC in a system of two coupled negative index medium layers, arXiv:0912.0575v1 [physics.optics] (2009)

  60. S Haroche, Fundamental systems in quantum optics, in: Cavity quantum electrodynamics edited by J Dalibard, J M Raimond and J Zinn-Justin (Elsevier Science, 1992)

  61. J R Tischler, M S Bradley, V Bulović, J H Song and A Nurmikko, Phys. Rev. Lett. 95, 036401 (2005)

    Article  ADS  Google Scholar 

  62. M G Raizen, R J Thompson, R J Brecha, H J Kimble and H J Carmichael, Phys. Rev. Lett. 63, 240 (1989)

    Article  ADS  Google Scholar 

  63. R J Thompson, G Rempe and H J Kimble, Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  64. R A Shelby, D R Smith and S Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  65. R A Shelby, D R Smith, S C Nemat-Nasser and S Schultz, Appl. Phys. Lett. 78, 489 (2001)

    Article  ADS  Google Scholar 

  66. V S C Manga Rao, S Dutta Gupta and G S Agarwal, Opt. Lett. 29, 307 (2004)

    Article  ADS  Google Scholar 

  67. G S Agarwal and S Dutta Gupta, Opt. Comm. 93, 173 (1992)

    Article  ADS  Google Scholar 

  68. S Dutta Gupta and G S Agarwal, Opt. Comm. 115, 597 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, S., Dutta Gupta, S. Absorption and dispersion in metamaterials: Feasibility of device applications. Pramana - J Phys 75, 837–854 (2010). https://doi.org/10.1007/s12043-010-0166-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0166-9

Keywords

Navigation