Skip to main content

Advertisement

Log in

A primer for electroweak induced low-energy nuclear reactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Under special circumstances, electromagnetic and weak interactions can induce low-energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow-moving electrons can — under appropriate circumstances — be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low-energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analysed previously, present order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Widom and L Larsen, Eur. Phys. J. C46, 107 (2006), arXiv:cond-mat/050502

    Article  ADS  Google Scholar 

  2. A Widom and L Larsen, arXiv:cond-mat/0602472

  3. A Widom and L Larsen, arXiv:nucl-th/0608059v2

  4. A Widom, Y N Srivastava and L Larsen, arXiv:nucl-th/0709.1222v1

  5. A Widom, Y N Srivastava and L Larsen, arXiv:nucl-th/0804.2647v1

  6. A Widom and L Larsen, arXiv:cond-mat/0509269

  7. A wire is our generic name for any object which carries a current I at a distance Λ large on the scale of thickness d of a flowing charged particle beam

  8. S Stephanakis et al, Phys. Rev. Lett. 29, 568 (1972)

    Article  ADS  Google Scholar 

  9. F Young et al, J. Appl. Phys. 48, 3642 (1977)

    Article  ADS  Google Scholar 

  10. Y Bakshaev et al, Plasma Phys. Rep. 27, 1039 (2001); ibid. 32, 501 (2006)

    Article  ADS  Google Scholar 

  11. G Sarkisov et al, Phys. Plasmas 12, 052702 (2005)

    Article  ADS  Google Scholar 

  12. A Velikovich et al, Phys. Plasmas 14, 022701 (2007)

    Article  ADS  Google Scholar 

  13. C Coverdale et al, Phys. Plasmas 14, 022706 (2007)

    Article  ADS  Google Scholar 

  14. G N Shah, H Razdan, C L Bhat and Q M Ali, Nature (London) 313, 773 (1985)

    Article  ADS  Google Scholar 

  15. S E Forbush, Phys. Rev. 70, 771 (1946)

    Article  ADS  Google Scholar 

  16. L I Dorman and D Venkatesan, Space Sci. Rev. 64, 183 (1993)

    Article  ADS  Google Scholar 

  17. D V Reames and C K Ng, Astrophys. J. 610, 510 (2004)

    Article  ADS  Google Scholar 

  18. A V Belova, E A Eroshenkoa, H Mavromichalakib, C Plainakib and V G Yankea, 29th International Cosmic Ray Conference (Pune, 2005) Vol. 1, p. 189

  19. E V Vashenyuka, Yu V Balabin, B B Gvozdevsky, S N Karpov, V G Yanke, E A Eroshenkoc, A V Belovc and R T Gushchinac, 29th International Cosmic Ray Conference (Pune, 2005) Vol. 1, p. 209

  20. N K Bostanjyan, A A Chilingarian, V S Eganov and G G Karapetyan, Adv. Space Res. 39, 1454 (2007)

    Article  ADS  Google Scholar 

  21. M A Shea and D F Smart, Proceedings of the 27th ICRC 3401 (2001)

  22. E W Cliver, J. Astrophys. 639, 1206 (2006)

    Article  ADS  Google Scholar 

  23. L3 Collaboration, Astron. Astrophys. 456, 357 (2006)

    Google Scholar 

  24. E R Priest, C R Foley, J Heyvaerts, T D Arber, J L Culhane and L W Acton, Nature (London) 393, 545 (1998)

    Article  ADS  Google Scholar 

  25. Under the same electric field, the protons will gain an equal and opposite momentum to that of the electrons, hence their CM would stay at rest (if we neglect their very small initial momenta)

  26. Let us recall that in the Born-Oppenheimer approximation, the nuclear coordinates are assumed fixed, only the electron coordinates are assumed dynamical. But on the thin surface of a monolayer, where collective plasmon oscillation modes for both the electrons and the protons exist, the approximation becomes untenable. In the bulk of the metal, the situation is different due to the screening of charges. The acceleration of electrons and the resultant neutron production being discussed here is all on the monolayer surface, not in the bulk

  27. In the Standard Model of particle physics, this process is described through the charged W-boson exchange whose mass M W ≈ 80 GeV/c2, corresponding to a rest energy so large on the scale of energies being discussed here, that the Fermi point-like limit of the weak interaction is an excellent approximation, with the identification G F/(ħc)3 = (πα/\( \sqrt 2 \))/(M W c 2 sin θ W)2 ≈ 1.1 × 10−5 GeV−2. Here enters also the weak angle through sin2 θW ≈ 0.23

  28. G L Wendt and C E Irion, Amer. Chem. Soc. 44, 1887 (1922)

    Article  Google Scholar 

  29. G L Wendt, Science 55, 567 (1922)

    Article  ADS  Google Scholar 

  30. E Rutherford, Nature (London) 109, 418 (1922)

    Article  ADS  Google Scholar 

  31. C D Darwin, Phil. Mag. 39, 537 (1920)

    Google Scholar 

  32. A K T Assis and J A Hernandes, Electromag. Phenom. 6, 29 (2006)

    Google Scholar 

  33. D W Kirst, Phys. Rev. 60, 47 (1941)

    Article  ADS  Google Scholar 

  34. D W Kirst and R Serber, Phys. Rev. 60, 53 (1941)

    Article  ADS  Google Scholar 

  35. W Fowler, E Burbidge, G Burbidge and F Hoyle, The Astrophys. J. 142, 423 (1965)

    Article  ADS  Google Scholar 

  36. P Wurz et al, Geophys. Res. Lett. 25, 2557 (1998)

    Article  ADS  Google Scholar 

  37. C Cowley, W Bidelman, S Hubrig, G Mathys and D Bord, Astron. Astrophys. 419, 1087 (2004)

    Google Scholar 

  38. S Goriely, Astron. Astrophys. 466, 619 (2007)

    Article  ADS  Google Scholar 

  39. K Lodders, arXiv:0710.4523 (October 2007)

  40. S Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity (John Wiley and Sons, New York, 1972) Chapter 8

    Google Scholar 

  41. D O Muhleman, R D Ekers and E B Fomalont, Phys. Rev. Lett. 24, 1377 (1970)

    Article  ADS  Google Scholar 

  42. P Foukal and P Miller, Solar Phys. 83, 83 (1983)

    Article  ADS  Google Scholar 

  43. U Feldman, Phys. Scr. 65, 185 (2002)

    Article  ADS  Google Scholar 

  44. K Stasiewicz and J Ekeberg, The Astrophys. J. (in press), April 2008

  45. Salty ocean water has a conductivity of about 1.5 × 1011 Hz

  46. H1 Collaboration: ISSN 0418-9833, DESY 06-029, April 2006

  47. S N Karpov et al, Il Nuovo Cimento C21, 551 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, Y.N., Widom, A. & Larsen, L. A primer for electroweak induced low-energy nuclear reactions. Pramana - J Phys 75, 617–637 (2010). https://doi.org/10.1007/s12043-010-0143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0143-3

Keywords

Navigation