Skip to main content
Log in

Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Detailed classical molecular dynamics simulation of transport coefficients and collision frequencies at high densities in rare gases are presented in this paper with a view to investigate the likely cause of discrepancy between theory and experiments. The results, when compared with experiments, showed an underestimation of the viscosity calculated through the Green-Kubo formalism, but the results are in agreement with some other calculations performed by other groups. The origin of the underestimation was considered in the present work. Analyses of the transport coefficients showed a very high collision frequency which suggested that an atom might spend much less time in the neighbourhood of the fields of force of another atom. The distribution of atoms in the systems adjusts itself to a nearly Maxwellian type that resulted in a locally and temporarily slowly varying temperature. We showed that during collision, the time spent by an atom in the fields of force of other atoms is so small compared with its relaxation time, leading to a possible reduction in local velocity autocorrelation between atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Ciccotti and W G Hoover (Eds.), Molecular dynamics simulation of statistical-mechanical systems (North-Holland, Amsterdam, 1986)

    Google Scholar 

  2. G Ciccotti and J F Ryckaert, Comput. Phys. Rep. 4, 345 (1986)

    Article  ADS  Google Scholar 

  3. D W Heerman, Computer simulations methods (Springer-Verlag, Berlin, 1986)

    Google Scholar 

  4. M P Allen and D J Tildesley, Computer simulation of liquids (Oxf. Univ. Press, Oxf., 1987)

    MATH  Google Scholar 

  5. D Frenkel and B Smit, Understanding molecular simulation: From algorithms to applications (Academic Press, NY, 1996)

    MATH  Google Scholar 

  6. E M Gosling, I R McDonald and K Singer, Mol. Phys. 26, 1475 (1973)

    Article  ADS  Google Scholar 

  7. G Ciccotti, G Jacucci and I R McDonald, Phys. Rev. A13, 426 (1976)

    ADS  Google Scholar 

  8. D J Evans and G P Morriss, Phys. Rev. A30, 1528 (1984)

    ADS  Google Scholar 

  9. F Mueller-Plathe, Phys. Rev. E59, 4894 (1999)

    ADS  Google Scholar 

  10. G Arya, E J Maginn and H Chang, J. Chem. Phys. 113, 2079 (2000)

    Article  ADS  Google Scholar 

  11. G Marcelli, B D Todd and R J Sadus, Fluid Phase Equilibria 183, 371 (2001)

    Article  Google Scholar 

  12. G A Fernandez, J Vrabec and H Hasse, Int. J. Thermophys. 25, 175 (2004)

    Article  Google Scholar 

  13. G A Fernandez, J Vrabec and H Hasse, Fluid Phase Equilibria 221, 157 (2004)

    Article  Google Scholar 

  14. R D Mountain, Int. J. Thermophys. 28, 259 (2007)

    Article  Google Scholar 

  15. P L Palla, C Pierleone and G Ciccotti, Phys. Rev. E78, 021204 (2008)

    ADS  Google Scholar 

  16. J Jeans, An introduction to the kinetic theory of gases (Cambridge Univ. Press, 1962)

  17. V Garzo and A Santos, Kinetic theory of gases in shear flow (Kluwer Acad. Publishers, 2003)

  18. D Sette (Ed.), Dispersion and absorption of sound by molecular processes (Acad. Press Inc., NY, 1963)

    Google Scholar 

  19. S G Brush, Kinetic theory (Pergamon Press, 1966)

  20. R Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  21. M S Green, J. Chem. Phys. 22, 398 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  22. W A Steele, in: Transport phenomena in fluids edited by H J M Hanley (Marcel Dekker, New York and London, 1969)

    Google Scholar 

  23. P B Visscher, J. Chem. Phys. 89, 5137 (1988)

    Article  ADS  Google Scholar 

  24. L Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  25. X J Chen, F Ercolessi, A C Levi and E Tosatti, Surf. Sci. 249, 237 (1999)

    Article  Google Scholar 

  26. E M Bringa, Nucl. Instrum. Methods Phys. Res. 153, 64 (1999)

    Article  ADS  Google Scholar 

  27. E S Landry, S Mikkilineni, M Paharia and A J H McGaughey, J. Appl. Phys. 102, 124301 (2007)

    Article  ADS  Google Scholar 

  28. H Kaburaki, J Li, S Yip and H Kimizuka, J. Appl. Phys. 102, 043514 (2007)

    Article  ADS  Google Scholar 

  29. [29] SWRutherford, D T Limmer, M G Smith and K G Honnell, Polymer 48, 6719 (2007)

    Article  Google Scholar 

  30. S H Lee, Bull. Korean Chem. Soc. 29, 641 (2008)

    Article  ADS  Google Scholar 

  31. A M Bazhenov and D M Heyes, J. Chem. Phys. 92, 1106 (1990)

    Article  ADS  Google Scholar 

  32. J Lopez-Lemus and J Alejandre, Mol. Phys. 101, 743 (2003)

    Article  ADS  Google Scholar 

  33. T Duren, F J Keil and N A Seaton, Mol. Phys. 100, 3741 (2002)

    Article  ADS  Google Scholar 

  34. G A Fernandez, J Vrabec and H Hasse, Fluid Phase Equilibria 249, 120 (2006)

    Article  Google Scholar 

  35. M F Pas and B J Zwolinski, Mol. Phys. 73, 471 (1991)

    Article  ADS  Google Scholar 

  36. R N Schwartz, Z I Slawsky and K F Herzfeld, J. Chem. Phys. 20, 1591 (1952)

    Article  ADS  Google Scholar 

  37. H Grad, Handb. d. Phys. 12, 205 (1959)

    Google Scholar 

  38. C Kittel, Introduction to solid state physics (Wiley, New York, 1975)

    Google Scholar 

  39. R W Hockney and J W Eastwood, Computer simulation using particles (McGraw-Hill, New York, 1981)

    Google Scholar 

  40. J P Hansen and I McDonald, Theory of simple liquids (Acad. Press, London, 1976)

    Google Scholar 

  41. L B Loeb, The kinetic theory of gases (Courier Dover Publications, 2004)

  42. E Bloch and P A Smith, The kinetic theory of gases (Methuen & Co. Ltd., 1924)

  43. W Wilson, A hundred years of physics, READ BOOKS ISBN 140671075X, 9781406710755 (2007)

  44. A Mulero, Theory and simulation of hard-sphere fluids and related systems (Springer-Verlag, Berlin, Heidelberg, 2008)

    Book  MATH  Google Scholar 

  45. K Meier, A Laesecke and S Kabelac, J. Chem. Phys. 121, 3671 (2004)

    Article  ADS  Google Scholar 

  46. S Viscardy, J Servantie and P Gaspard, J. Chem. Phys. 126, 184512 (2007)

    Article  ADS  Google Scholar 

  47. M Schoen and C Hoeisel, Mol. Phys. 56, 653 (1985)

    Article  ADS  Google Scholar 

  48. J J Erpenbeck, Phys. Rev. A38, 6255 (1988)

    ADS  Google Scholar 

  49. M Ferrario, G Ciccotti, B L Holian and J P Ryckaert, Phys. Rev. A44, 6936 (1991)

    ADS  Google Scholar 

  50. N B Vargaftik, Tables on the thermophysical properties of liquids and gases (Hemisphere Publ. Corp., NY, 1975)

    Google Scholar 

  51. K V Tretiakov and S Scandolo, J. Chem. Phys. 120, 3765 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Adebayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adebayo, G.A., Anusionwu, B.C., Njah, A.N. et al. Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation. Pramana - J Phys 75, 523–536 (2010). https://doi.org/10.1007/s12043-010-0136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0136-2

Keywords

Navigation