Skip to main content
Log in

Structure of nuclear transition matrix elements for neutrinoless double-β decay

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously established by obtaining an overall agreement between the theoretically calculated spectroscopic properties and the available experimental data. Presently, we study the role of short-range correlations, radial evolution of NTMEs and deformation effects due to quadrupolar correlations. In addition, limits on effective light neutrino mass 〈m ν 〉 are extracted from the observed limits on half-lives T 2/0ν1 of neutrinoless double-β decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Doi, T Kotani and E Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985)

    Article  ADS  Google Scholar 

  2. J D Vergados, Phys. Rep. 133, 1 (1986)

    Article  ADS  Google Scholar 

  3. R N Mohapatra and P B Pal, Massive neutrinos in physics and astrophysics (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  4. G L Fogli et al, Phys. Rev. D78, 033010 (2008)

    ADS  Google Scholar 

  5. P Bamert, C P Burgess and R N Mohapatra, Nucl. Phys. B449, 25 (1995)

    Article  ADS  Google Scholar 

  6. B H Brandow, Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  7. T T S Kuo, Lecture notes in physics edited by T T S Kuo and S S M Wong (Springer, Berlin, 1981) Vol. 144, p. 248

    Google Scholar 

  8. E Caurier, J Menéndez, F Nowacki and A Poves, Phys. Rev. Lett. 100, 052503 (2008)

    Article  ADS  Google Scholar 

  9. E Caurier, F Nowacki and A Poves, Eur. Phys. J. A36, 195 (2008)

    ADS  Google Scholar 

  10. J Menéndez, A Poves, E Caurier and F Nowacki, Nucl. Phys A818, 139 (2009); arXiv:0809.2183v1[nucl-th].

    ADS  Google Scholar 

  11. P Vogel and M R Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986)

    Article  ADS  Google Scholar 

  12. O Civitarese, A Faessler and T Tomoda, Phys. Lett. B196, 11 (1987)

    ADS  Google Scholar 

  13. J Suhonen and O Civitarese, Phys. Rep. 300, 123 (1998)

    Article  ADS  Google Scholar 

  14. F Šimkovic, L Pacearescu and A Faessler, Nucl. Phys. A733, 321 (2004)

    ADS  Google Scholar 

  15. M S Yousef, V Rodin, A Faessler and F Šimkovic, Phys. Rev. C79, 014314 (2009)

    ADS  Google Scholar 

  16. M Baranger and K Kumar, Nucl. Phys. A110, 490 (1968)

    ADS  Google Scholar 

  17. R Chandra, J Singh, P K Rath, P K Raina and J G Hirsch, Eur. Phys. J. A23, 223 (2005)

    ADS  Google Scholar 

  18. S Singh, R Chandra, P K Rath, P K Raina and J G Hirsch, Eur. Phys. J. A33, 375 (2007)

    ADS  Google Scholar 

  19. P K Raina, A Shukla, S Singh, P K Rath and J G Hirsch, Eur. Phys. J. A28, 27 (2006)

    ADS  Google Scholar 

  20. M Doi and T Kotani, Prog. Theor. Phys. 87, 1207 (1992); 89, 139 (1993)

    Article  ADS  Google Scholar 

  21. W C Haxton and G J Stephenson Jr., Prog. Part. Nucl. Phys. 12, 409 (1984)

    Article  ADS  Google Scholar 

  22. T Tomoda, Rep. Prog. Phys. 54, 53 (1991)

    Article  ADS  Google Scholar 

  23. K Chaturvedi, R Chandra, P K Rath, P K Raina and J G Hirsch, Phys. Rev. C78, 054302 (2008)

    ADS  Google Scholar 

  24. P K Rath, R Chandra, K Chaturvedi, P K Raina and J G Hirsch, Phys. Rev. C80, 044303 (2009)

    ADS  Google Scholar 

  25. R Chandra, K Chaturvedi, P K Rath, P K Raina and J G Hirsch, Europhys. Lett. 86, 32001 (2009)

    Article  ADS  Google Scholar 

  26. S Raman, C W Nestor Jr and P Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  27. A S Barabash, arXiv:0908.4173v1 [nucl-ex]

  28. R G Winter, Phys. Rev. 85, 687 (1952)

    Article  ADS  Google Scholar 

  29. F Šimkovic, G Pantis, J D Vergados and A Faessler, Phys. Rev. C60, 055502 (1999)

    ADS  Google Scholar 

  30. J D Vergados, Phys. Rep. 361, 1 (2002)

    Article  ADS  Google Scholar 

  31. J G Hirsch, O Castaños and P O Hess, Nucl. Phys. A582, 124 (1995)

    ADS  Google Scholar 

  32. M Kortelainen and J Suhonen, Phys. Rev. C76, 024315 (2007)

    ADS  Google Scholar 

  33. M Kortelainen, O Civitarese, J Suhonen and J Toivanen, Phys. Lett. B647, 128 (2007)

    ADS  Google Scholar 

  34. F Šimkovic, A Faessler, V Rodin, P Vogel and J Engel, Phys. Rev. C77, 045503 (2008)

    ADS  Google Scholar 

  35. F Šimkovic, A Faessler, H Muether, V Rodin and M Stauf, arXiv:0902.0331v1 [nuclth].

  36. H F Wu, H Q Song, T T S Kuo, W K Cheng and D Strottman, Phys. Lett. B162, 227 (1985)

    ADS  Google Scholar 

  37. J Argyriades et al, arXiv:0906.2694v2 [nucl-ex].

  38. J H Fremlin and M C Walters, Proc. Phys. Soc. London A65, 911 (1952)

    ADS  Google Scholar 

  39. R Arnold et al, Phys. Rev. Lett. 95, 182302 (2005)

    Article  ADS  Google Scholar 

  40. C Arnaboldi et al, Phys. Lett. B557, 167 (2003)

    ADS  Google Scholar 

  41. C Arnaboldi et al, Phys. Rev. C78, 035502 (2008)

    ADS  Google Scholar 

  42. A De Silva, M K Moe, M A Nelson and M A Vient, Phys. Rev. C56, 2451 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Rath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, P.K. Structure of nuclear transition matrix elements for neutrinoless double-β decay. Pramana - J Phys 75, 281–291 (2010). https://doi.org/10.1007/s12043-010-0116-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0116-6

Keywords

Navigation