Skip to main content
Log in

β-Decay and the electric dipole moment: Searches for time-reversal violation in radioactive nuclei and atoms

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

One of the greatest successes of the Standard Model of particle physics is the explanation of time-reversal violation (TRV) in heavy mesons. It also implies that TRV is immeasurably small in normal nuclear matter. However, unifying models beyond the Standard Model predict TRV to be within reach of measurement in nuclei and atoms, thus opening an important window to search for new physics. We will discuss two complementary experiments sensitive to TRV: Correlations in the β-decay of 21Na and the search for an electric dipole moment (EDM) in radium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P G H Sandars, Contemp. Phys. 42, 97 (2001)

    Article  ADS  Google Scholar 

  2. P Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001); J. Res. Natl. Inst. Stand. Tech. 110, 453 (2005)

    Article  ADS  Google Scholar 

  3. S S Gershtein, A A Likhoded and A I Onishchenko, Phys. Rep. 320, 159 (1999)

    Article  ADS  Google Scholar 

  4. J Hardy, elsewhere in these proceedings; J C Hardy and I S Towner, Phys. Rev. C79, 055502 (2009)

    ADS  Google Scholar 

  5. O Naviliat-Cuncic and N Severijns, Phys. Rev. Lett. 102, 142302 (2009)

    Article  ADS  Google Scholar 

  6. L J Lising et al, Phys. Rev. C62, 055501 (2000)

    ADS  Google Scholar 

  7. T Soldner et al, Phys. Lett. B581, 49 (2004)

    ADS  Google Scholar 

  8. F Calaprice, Hyperfine Interactions 22, 83 (1985)

    Article  ADS  Google Scholar 

  9. S-i Ando, J A McGovern and T Sato, Phys. Lett. B677, 109 (2009)

    ADS  Google Scholar 

  10. P Herczeg and I B Khriplovich, Phys. Rev. D56, 80 (1997)

    ADS  Google Scholar 

  11. A Gorelov et al, Phys. Rev. Lett. 94, 142501 (2005)

    Article  ADS  Google Scholar 

  12. N D Scielzo et al, Phys. Rev. Lett. 93, 102501 (2004) P A Vetter et al, Phys. Rev. C77, 035502 (2008)

    Article  ADS  Google Scholar 

  13. E Adelberger et al, Phys. Rev. Lett. 83, 3101 (1999)

    Article  ADS  Google Scholar 

  14. A Garcia et al, Hyperfine Interactions 129, 237 (2000)

    Article  ADS  Google Scholar 

  15. S Crane et al, Phys. Rev. Lett. 86, 2967 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. D Feldbaum et al, Phys. Rev. A76, 05140 (2007)

    Google Scholar 

  17. D Melconian et al, Phys. Lett. B649, 370 (2007)

    ADS  Google Scholar 

  18. J R A Pitcairn et al, Phys. Rev. C79, 015501 (2009)

    ADS  Google Scholar 

  19. G P A Berg et al, Nucl. Instrum. Methods A560, 169 (2006)

    ADS  Google Scholar 

  20. E Traykov et al, Nucl. Instrum. Methods A572, 580 (2007)

    ADS  Google Scholar 

  21. E Traykov et al, Nucl. Instrum. Methods B266, 4478 (2008)

    ADS  Google Scholar 

  22. M Sohani, Set-up for precise measurements of β-decay in optically trapped radioactive Na, Ph.D. thesis (Universtiy of Groningen, 2008)

  23. S Knoop et al, J. Phys. B38, 3163 (2005)

    ADS  Google Scholar 

  24. S Rikhof, Bachelor thesis Saxion Hogescholen Enschede

  25. N Severijns et al, Phys. Rev. C78, 055501 (2008)

    ADS  Google Scholar 

  26. A Young et al, KVI proposal P10

  27. M J Ramsey-Musolf and S Su, Phys. Rep. 456, 1 (2008)

    Article  ADS  Google Scholar 

  28. B C Regan et al, Phys. Rev. Lett. 88, 071805 (2002)

    Article  ADS  Google Scholar 

  29. G W Bennett et al, Phys. Rev. D80, 052008 (2009)

    ADS  Google Scholar 

  30. A G Grozin, I B Khriplovich and A S Rudenko, Phys. Atom. Nucl. 72, 1203 (2009)

    Article  ADS  Google Scholar 

  31. W C Griffith et al, Phys. Rev. Lett. 102, 101601 (2009)

    Article  ADS  Google Scholar 

  32. C A Baker et al, Phys. Rev. Lett. 97, 131801 (2006)

    Article  ADS  Google Scholar 

  33. F J M Farley et al, Phys. Rev. Lett. 93, 052001 (2004)

    Article  ADS  Google Scholar 

  34. Y F Orlov, W M Morse and Y K Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)

    Article  ADS  Google Scholar 

  35. C P Liu and R G E Timmermans, Phys. Rev. C70, 055501 (2004)

    ADS  Google Scholar 

  36. P Shidling, Nucl. Instrum. Methods A606, 305 (2009)

    ADS  Google Scholar 

  37. V Dzuba, V Flambaum and J Ginges, Phys. Rev. A61, 062509 (2000)

    ADS  Google Scholar 

  38. J R Guest et al, Phys. Rev. Lett. 98, 093001 (2007)

    Article  ADS  Google Scholar 

  39. S De et al, Phys. Rev. A79, 041402 (2009)

    ADS  Google Scholar 

  40. K Wendt et al, Z. Phys. D4, 227 (1987)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Wilschut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilschut, H.W., Dammalapati, U., van der Hoek, D.J. et al. β-Decay and the electric dipole moment: Searches for time-reversal violation in radioactive nuclei and atoms. Pramana - J Phys 75, 163–170 (2010). https://doi.org/10.1007/s12043-010-0075-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0075-y

Keywords

Navigation