Skip to main content
Log in

Progress in all-order breakup reaction theories

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Progress in breakup reaction theories, like the distorted wave Born approximation, the continuum discretized coupled channels method and the dynamical eikonal approximation, is brought into focus. The need to calculate exclusive reaction observables and the utility of benchmark tests as arbitrators of theoretical models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G R Satchler, Direct nuclear reactions (Oxford University Press, New York, 1991)

    Google Scholar 

  2. M Gell-Mann and M L Goldberger, Phys. Rev. 91, 398 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. F S Levin, Ann. Phys. 46, 1 (1968)

    Article  ADS  Google Scholar 

  4. C M Vincent, Phys. Rev. 175, 1309 (1968)

    Article  ADS  Google Scholar 

  5. R Huby and J R Mines, Rev. Mod. Phys. 37, 406 (1965)

    Article  ADS  Google Scholar 

  6. G Baur, F Rösel, D Trautmann and R Shyam, Phys. Rep. 111, 333 (1984)

    Article  ADS  Google Scholar 

  7. G Baur and D Trautmann, Nucl. Phys. A199, 218 (1973); Phys. Rep. 25, 293 (1976)

    ADS  Google Scholar 

  8. G Baur, F Rösel and D Trautmann, Nucl. Phys. A265, 101 (1976)

    ADS  Google Scholar 

  9. G Baur, R Shyam, F Rösel and D Trautmann, Helv. Phys. Acta 53, 506 (1980)

    Google Scholar 

  10. J Pampus et al, Nucl. Phys. A311, 141 (1978)

    ADS  Google Scholar 

  11. J Kleinfeller et al, Nucl. Phys. A370, 205 (1981)

    ADS  Google Scholar 

  12. R Shyam, P Banerjee and G Baur, Nucl. Phys. A540, 341 (1992)

    ADS  Google Scholar 

  13. P Banerjee and R Shyam, Nucl. Phys. A561, 112 (1993); Phys. Lett. B318, 268 (1993)

    ADS  Google Scholar 

  14. F Rybicki and N Austern, Phys. Rev. C6, 1525 (1972)

    ADS  Google Scholar 

  15. H Amakawa and N Austern, Aust. J. Phys. 36, 633 (1983)

    ADS  Google Scholar 

  16. N Austern, Phys. Rev. C30, 1130 (1984)

    ADS  Google Scholar 

  17. M Yahiro, Y Iseri, M Kamimura and M Nakano, Phys. Lett. B141, 19 (1984)

    ADS  Google Scholar 

  18. N Heide, D K Srivastava and H Rebel, Phys. Rev. Lett. 63, 601 (1989)

    Article  ADS  Google Scholar 

  19. R Shyam and I J Thompson, Phys. Rev. C59, 2645 (1999)

    ADS  Google Scholar 

  20. K Alder and A Winther, Electromagnetic excitation (North-Holland Publishing Co., Amsterdam, 1975)

    Google Scholar 

  21. G H Rawitscher, Phys. Rev. C9, 2210 (1974)

    ADS  Google Scholar 

  22. M Kawai, Prog. Theor. Phys. Suppl. 89, 11 (1986)

    Article  ADS  Google Scholar 

  23. M Yahiro et al, Prog. Theor. Phys. Suppl. 89, 32 (1986)

    Article  ADS  Google Scholar 

  24. Y Iseri, M Yahiro and M Kamimura, Prog. Theor. Phys. Suppl. 89, 84 (1986)

    Article  ADS  Google Scholar 

  25. Y Sakuragi, M Yahiro and M Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986)

    Article  ADS  Google Scholar 

  26. N Austern and M Kawai, Prog. Theor. Phys. 80, 694 (1988)

    Article  ADS  Google Scholar 

  27. R Y Rasoanaivo and G H Rawitscher, Phys. Rev. C39, 1709 (1989)

    ADS  Google Scholar 

  28. F M Nunes and I J Thompson, Phys. Rev. C59, 2652 (1999)

    ADS  Google Scholar 

  29. M Kamimura et al, Prog. Theor. Phys. Suppl. 89, 1 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  30. G Baur, R Shyam, F Rösel and D Trautmann, Phys. Rev. C28, 946 (1983)

    ADS  Google Scholar 

  31. J A Tostevin, F M Nunes and I J Thompson, Phys. Rev. C63, 024617 (2001)

    ADS  Google Scholar 

  32. J Mortimer, I J Thompson and J A Tostevin, Phys. Rev. C65, 064619 (2002)

    ADS  Google Scholar 

  33. A N Moro, R Crespo, F Nunes and I J Thompson, Phys. Rev. C66, 024612 (2002)

    ADS  Google Scholar 

  34. G Moliere, Z. Naturforsch. A2, 133 (1947)

    ADS  Google Scholar 

  35. R J Glauber, Lectures in theoretical physics edited by W E Brittin and L G Dunham (Interscience Publ., New York, 1959)

    Google Scholar 

  36. G Goldstein, D Baye and P Capel, Phys. Rev. C73, 024602 (2006)

    ADS  Google Scholar 

  37. R Chatterjee, Phys. Rev. C75, 064604 (2007)

    ADS  Google Scholar 

  38. N Fukuda et al, Phys. Rev. C70, 054606 (2004)

    ADS  Google Scholar 

  39. G Goldstein, D Baye and P Capel, Phys. Rev. C76, 024608 (2007)

    ADS  Google Scholar 

  40. K Ogata et al, Phys. Rev. C76, 024605 (2007)

    Google Scholar 

  41. P Banerjee et al, Phys. Rev. C65, 064602 (2002)

    ADS  Google Scholar 

  42. S Typel and G Baur, Nucl. Phys. A759, 247 (2005)

    ADS  Google Scholar 

  43. M A Nagarajan, S M Lenzi and A Vitturi, Eur. Phys. J. A24, 63 (2005)

    ADS  Google Scholar 

  44. R Chatterjee, L Fortunato and A Vitturi, Eur. Phys. J. A35, 213 (2008)

    ADS  Google Scholar 

  45. A Nordsieck, Phys. Rev. 93, 785 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, R. Progress in all-order breakup reaction theories. Pramana - J Phys 75, 127–136 (2010). https://doi.org/10.1007/s12043-010-0072-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0072-1

Keywords

Navigation